算法刷题 322. 零钱兑换

2024-06-07 11:28
文章标签 算法 刷题 兑换 零钱 322

本文主要是介绍算法刷题 322. 零钱兑换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

322. 零钱兑换

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。

你可以认为每种硬币的数量是无限的。

示例 1:

输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1

示例 2:

输入:coins = [2], amount = 3
输出:-1
示例 3:

输入:coins = [1], amount = 0
输出:0

提示:

1 <= coins.length <= 12
1 <= coins[i] <= 231 - 1
0 <= amount <= 104

这段代码实现了一个函数 coinChange,用于计算用给定的硬币数组 coins 兑换指定金额 amount 所需的最少硬币数量。如果无法兑换,则返回 -1。

以下是代码的详细解释和注释:

var coinChange = function (coins, amount) {// 创建一个长度为 amount + 1 的数组 dp,并初始化为 Infinitylet dp = new Array(amount + 1).fill(Infinity);// 初始化 dp[0] 为 0,因为面额 0 只需要 0 个硬币dp[0] = 0;// 遍历从 1 到 amount 的每一个金额 ifor (let i = 1; i <= amount; i++) {// 遍历每一个硬币 coinfor (let coin of coins) {// 如果当前金额 i 大于等于硬币的面值 coinif (i - coin >= 0) {// 更新 dp[i],选择最小的硬币数量// dp[i - coin] 表示当前金额 i 减去当前硬币面值所需的最少硬币数量// dp[i] 可由 dp[i - coin] + 1 转换而来dp[i] = Math.min(dp[i], dp[i - coin] + 1);}}}// 如果 dp[amount] 仍然是 Infinity,表示无法兑换,返回 -1// 否则返回 dp[amount],即兑换 amount 所需的最少硬币数量return dp[amount] === Infinity ? -1 : dp[amount];
};

详细解释

  1. 初始化动态规划数组 dp:

    let dp = new Array(amount + 1).fill(Infinity);
    dp[0] = 0;
    

    创建一个长度为 amount + 1 的数组 dp,并将所有元素初始化为 Infinitydp[i] 表示兑换金额 i 所需的最少硬币数量。初始化 dp[0] 为 0,因为面额 0 只需要 0 个硬币。

  2. 遍历从 1 到 amount 的每一个金额 i:

    for (let i = 1; i <= amount; i++) {
    

    对于每个金额 i,尝试计算兑换该金额所需的最少硬币数量。

  3. 遍历每一个硬币 coin:

    for (let coin of coins) {
    

    对于每个硬币 coin,检查是否可以用该硬币兑换当前金额 i

  4. 更新 dp[i]:

    if (i - coin >= 0) {dp[i] = Math.min(dp[i], dp[i - coin] + 1);
    }
    

    如果当前金额 i 大于等于硬币的面值 coin,则更新 dp[i]dp[i - coin] + 1 的最小值。dp[i - coin] 表示当前金额 i 减去当前硬币面值所需的最少硬币数量,加上当前硬币的数量 1。

  5. 返回结果:

    return dp[amount] === Infinity ? -1 : dp[amount];
    

    最后,如果 dp[amount] 仍然是 Infinity,表示无法兑换,返回 -1。否则返回 dp[amount],即兑换 amount 所需的最少硬币数量。

示例

假设 coins = [1, 2, 5]amount = 11,代码的执行过程如下:

  • i = 1dp[1] = 1(1 = 1)
  • i = 2dp[2] = 1(2 = 2)
  • i = 3dp[3] = 2(3 = 2 + 1)
  • i = 4dp[4] = 2(4 = 2 + 2)
  • i = 5dp[5] = 1(5 = 5)
  • i = 6dp[6] = 2(6 = 5 + 1)
  • i = 7dp[7] = 2(7 = 5 + 2)
  • i = 8dp[8] = 3(8 = 5 + 2 + 1)
  • i = 9dp[9] = 3(9 = 5 + 2 + 2)
  • i = 10dp[10] = 2(10 = 5 + 5)
  • i = 11dp[11] = 3(11 = 5 + 5 + 1)

最终,dp[11] 的值为 3,表示 11 可以由 3 个硬币组成(5 + 5 + 1)。

let dp = new Array(amount + 1).fill(Infinity);为什么要 amount+1

在动态规划问题中,数组 dp 通常用于存储从 0 到目标值(在这个例子中是 amount)的每个子问题的解。为了能够存储从 0 到 amount 的所有值,我们需要一个长度为 amount + 1 的数组。

详细解释

假设 amount 为 5,那么我们需要一个数组 dp 来存储从 0 到 5 的每个金额所需的最少硬币数量。数组的索引表示金额,数组的值表示兑换该金额所需的最少硬币数量。

  • dp[0] 表示兑换金额 0 所需的最少硬币数量。
  • dp[1] 表示兑换金额 1 所需的最少硬币数量。
  • dp[2] 表示兑换金额 2 所需的最少硬币数量。
  • dp[3] 表示兑换金额 3 所需的最少硬币数量。
  • dp[4] 表示兑换金额 4 所需的最少硬币数量。
  • dp[5] 表示兑换金额 5 所需的最少硬币数量。

为了能够存储这些值,数组 dp 的长度需要是 amount + 1,即 6。

代码示例

let dp = new Array(amount + 1).fill(Infinity);
  • new Array(amount + 1) 创建一个长度为 amount + 1 的数组。
  • .fill(Infinity) 将数组的每个元素初始化为 Infinity,表示初始状态下无法兑换这些金额。

为什么需要 amount + 1

  1. 索引从 0 开始:
    JavaScript 数组的索引从 0 开始。如果我们只创建一个长度为 amount 的数组,那么我们只能存储从 0 到 amount - 1 的值,而无法存储 amount 本身的值。

  2. 包含所有子问题:
    动态规划的核心思想是通过解决子问题来解决原问题。为了能够解决 amount 的问题,我们需要解决从 0 到 amount 的所有子问题。因此,数组的长度需要是 amount + 1

示例

假设 amount = 5,我们需要一个长度为 6 的数组 dp

let dp = new Array(6).fill(Infinity);

初始化后,dp 数组如下:

dp = [Infinity, Infinity, Infinity, Infinity, Infinity, Infinity]

然后我们设置 dp[0] = 0,因为兑换金额 0 只需要 0 个硬币:

dp[0] = 0;

此时,dp 数组如下:

dp = [0, Infinity, Infinity, Infinity, Infinity, Infinity]

接下来,我们通过动态规划填充 dp 数组,最终得到兑换 amount 所需的最少硬币数量。

总结

使用 amount + 1 的数组长度是为了确保我们能够存储从 0 到 amount 的所有子问题的解,从而能够正确地解决整个问题。

这篇关于算法刷题 322. 零钱兑换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1039048

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯: