文本相似度算法(余弦定理)

2024-06-07 00:58

本文主要是介绍文本相似度算法(余弦定理),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


       最近由于工作项目,需要判断两个txt文本是否相似,于是开始在网上找资料研究,因为在程序中会把文本转换成String再做比较,所以最开始找到了这篇关于 距离编辑算法 Blog写的非常好,受益匪浅。

       于是我决定把它用到项目中,来判断两个文本的相似度。但后来实际操作发现有一些问题:直接说就是查询一本书中的相似章节花了我7、8分钟;这是我不能接受……

       于是停下来仔细分析发现,这种算法在此项目中不是特别适用,由于要判断一本书中是否有相同章节,所以每两个章节之间都要比较,若一本书书有x章的话,这里需对比x(x-1)/2次;而此算法采用矩阵的方式,计算两个字符串之间的变化步骤,会遍历两个文本中的每一个字符两两比较,可以推断出时间复杂度至少为 document1.length × document2.length,我所比较的章节字数平均在几千~一万字;这样计算实在要了老命。

       想到Lucene中的评分机制,也是算一个相似度的问题,不过它采用的是计算向量间的夹角(余弦公式),在google黑板报中的:数学之美(余弦定理和新闻分类) 也有说明,可以通过余弦定理来判断相似度;于是决定自己动手试试。

       首相选择向量的模型:在以字为向量还是以词为向量的问题上,纠结了一会;后来还是觉得用字,虽然词更为准确,但分词却需要增加额外的复杂度,并且此项目要求速度,准确率可以放低,于是还是选择字为向量。

       然后每个字在章节中出现的次数,便是以此字向量的值。现在我们假设:

       章节1中出现的字为:Z1c1,Z1c2,Z1c3,Z1c4……Z1cn;它们在章节中的个数为:Z1n1,Z1n2,Z1n3……Z1nm

       章节2中出现的字为:Z2c1,Z2c2,Z2c3,Z2c4……Z2cn;它们在章节中的个数为:Z2n1,Z2n2,Z2n3……Z2nm

       其中,Z1c1和Z2c1表示两个文本中同一个字,Z1n1和Z2n1是它们分别对应的个数,

       最后我们的相似度可以这么计算:

       程序实现如下:(若有可优化或更好的实现请不吝赐教)

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
public class CosineSimilarAlgorithm {
     public static double getSimilarity(String doc1, String doc2) {
         if (doc1 != null && doc1.trim().length() > 0 && doc2 != null
                 && doc2.trim().length() > 0 ) {
             
             Map<Integer, int []> AlgorithmMap = new HashMap<Integer, int []>();
             
             //将两个字符串中的中文字符以及出现的总数封装到,AlgorithmMap中
             for ( int i = 0 ; i < doc1.length(); i++) {
                 char d1 = doc1.charAt(i);
                 if (isHanZi(d1)){
                     int charIndex = getGB2312Id(d1);
                     if (charIndex != - 1 ){
                         int [] fq = AlgorithmMap.get(charIndex);
                         if (fq != null && fq.length == 2 ){
                             fq[ 0 ]++;
                         } else {
                             fq = new int [ 2 ];
                             fq[ 0 ] = 1 ;
                             fq[ 1 ] = 0 ;
                             AlgorithmMap.put(charIndex, fq);
                         }
                     }
                 }
             }
             for ( int i = 0 ; i < doc2.length(); i++) {
                 char d2 = doc2.charAt(i);
                 if (isHanZi(d2)){
                     int charIndex = getGB2312Id(d2);
                     if (charIndex != - 1 ){
                         int [] fq = AlgorithmMap.get(charIndex);
                         if (fq != null && fq.length == 2 ){
                             fq[ 1 ]++;
                         } else {
                             fq = new int [ 2 ];
                             fq[ 0 ] = 0 ;
                             fq[ 1 ] = 1 ;
                             AlgorithmMap.put(charIndex, fq);
                         }
                     }
                 }
             }
             
             Iterator<Integer> iterator = AlgorithmMap.keySet().iterator();
             double sqdoc1 = 0 ;
             double sqdoc2 = 0 ;
             double denominator = 0 ;
             while (iterator.hasNext()){
                 int [] c = AlgorithmMap.get(iterator.next());
                 denominator += c[ 0 ]*c[ 1 ];
                 sqdoc1 += c[ 0 ]*c[ 0 ];
                 sqdoc2 += c[ 1 ]*c[ 1 ];
             }
             
             return denominator / Math.sqrt(sqdoc1*sqdoc2);
         } else {
             throw new NullPointerException(
                     " the Document is null or have not cahrs!!" );
         }
     }
     public static boolean isHanZi( char ch) {
         // 判断是否汉字
         return (ch >= 0x4E00 && ch <= 0x9FA5 );
     }
     /**
      * 根据输入的Unicode字符,获取它的GB2312编码或者ascii编码,
      *
      * @param ch
      *            输入的GB2312中文字符或者ASCII字符(128个)
      * @return ch在GB2312中的位置,-1表示该字符不认识
      */
     public static short getGB2312Id( char ch) {
         try {
             byte [] buffer = Character.toString(ch).getBytes( "GB2312" );
             if (buffer.length != 2 ) {
                 // 正常情况下buffer应该是两个字节,否则说明ch不属于GB2312编码,故返回'?',此时说明不认识该字符
                 return - 1 ;
             }
             int b0 = ( int ) (buffer[ 0 ] & 0x0FF ) - 161 ; // 编码从A1开始,因此减去0xA1=161
             int b1 = ( int ) (buffer[ 1 ] & 0x0FF ) - 161 ; // 第一个字符和最后一个字符没有汉字,因此每个区只收16*6-2=94个汉字
             return ( short ) (b0 * 94 + b1);
         } catch (UnsupportedEncodingException e) {
             e.printStackTrace();
         }
         return - 1 ;
     }
}

       程序中做了两小的改进,以加快效率:

       1. 只将汉字作为向量,其他的如标点,数字等符号不处理;2. 在HashMap中存放汉字和其在文本中对于的个数时,先将单个汉字通过GB2312编码转换成数字,再存放。

       最后写了个测试,根据两种不同的算法对比下时间,下面是测试结果:

       余弦定理算法:doc1 与 doc2 相似度为:0.9954971, 耗时:22mm

       距离编辑算法:doc1 与 doc2 相似度为:0.99425095, 耗时:322mm

       可见效率有明显提高,算法复杂度大致为:document1.length + document2.length

这篇关于文本相似度算法(余弦定理)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1037728

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

使用Python实现文本转语音(TTS)并播放音频

《使用Python实现文本转语音(TTS)并播放音频》在开发涉及语音交互或需要语音提示的应用时,文本转语音(TTS)技术是一个非常实用的工具,下面我们来看看如何使用gTTS和playsound库将文本... 目录什么是 gTTS 和 playsound安装依赖库实现步骤 1. 导入库2. 定义文本和语言 3

Python实现常用文本内容提取

《Python实现常用文本内容提取》在日常工作和学习中,我们经常需要从PDF、Word文档中提取文本,本文将介绍如何使用Python编写一个文本内容提取工具,有需要的小伙伴可以参考下... 目录一、引言二、文本内容提取的原理三、文本内容提取的设计四、文本内容提取的实现五、完整代码示例一、引言在日常工作和学

Java实现将Markdown转换为纯文本

《Java实现将Markdown转换为纯文本》这篇文章主要为大家详细介绍了两种在Java中实现Markdown转纯文本的主流方法,文中的示例代码讲解详细,大家可以根据需求选择适合的方案... 目录方法一:使用正则表达式(轻量级方案)方法二:使用 Flexmark-Java 库(专业方案)1. 添加依赖(Ma

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

Linux使用cut进行文本提取的操作方法

《Linux使用cut进行文本提取的操作方法》Linux中的cut命令是一个命令行实用程序,用于从文件或标准输入中提取文本行的部分,本文给大家介绍了Linux使用cut进行文本提取的操作方法,文中有详... 目录简介基础语法常用选项范围选择示例用法-f:字段选择-d:分隔符-c:字符选择-b:字节选择--c

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相