【Mongodb】Mongodb亿级数据性能测试和压测

2024-06-06 19:20

本文主要是介绍【Mongodb】Mongodb亿级数据性能测试和压测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一,mongodb数据性能测试

如需转载,请标明出处:https://zhenghuisheng.blog.csdn.net/article/details/139505973

mongodb数据性能测试

  • 一,mongodb数据性能测试
        • 1,mongodb数据库创建和索引设置
        • 2,线程池+批量方式插入数据
        • 3,一千万数据性能测试
        • 4,两千万数据性能测试
        • 5,五千万数据性能测试
        • 6,一亿条数据性能测试
        • 7,压测
        • 8,总结

之前公司将用户的游戏数据存储在mysql中,就是直接将json数据存储到mysql数据库里面,几个月不到,数据库里面已经有两亿条数据,而且每行中每个json数据量也比较大,导致占用的磁盘容量也比较大,因此为了解决mysql带来多方面的瓶颈,最终选择使用mongodb来代替mysql。为了测试mongodbdb的性能以及是否满足需求,因此做了以下测试,对mongodb在高流量时验证其增删改查的效率,以及对其进行压测

服务器配置:2核4g轻量级服务器 磁盘容量 70GB

每条数据大概在500个字节,索引有一个id主键索引,还有一个parentId和category的联合唯一索引,这里两个字段能保证唯一性,因此用唯一索引效率更优

1,mongodb数据库创建和索引设置

首先在Java代码中创建一个实体类,用这个类作为json对象插入到文档中即可。

@Data
public class Archive {private String id;//账号idprivate String parentId;private String category;private String content;
}

随后在mongodb中创建一个数据库,然后再该库下面建立一个名为 archive 的集合,mongodb的集合就是类似于mysql的表,两者概念是一样的。由于后期数据量可能非常大,因此根据mongodb官方文档所说,在数据插入前,尽量提前建立索引,为了满足业务需求,这里选择创建一个联合索引,由于我这边业务能保证要加索引的两个字段的唯一性,因此选择直接添加唯一索引

db.users.createIndex({parentId: 1,category:1}, {unique: true})

如果navicate操作不方便的话,可以安装一个 Mongodb Compass 可视化工具,如下图,很多操作都是可以在这个可视化图形界面上面直接操作的
在这里插入图片描述

2,线程池+批量方式插入数据

由于这边主要是io操作将数据插入,不需要计算之类的,因此选择使用io密集型线程池,接下来自定义一个线程池

@Slf4j
public class ThreadPoolUtil {public static ThreadPoolExecutor pool = null;public static synchronized ThreadPoolExecutor getThreadPool() {if (pool == null) {//获取当前机器的cpuint cpuNum = Runtime.getRuntime().availableProcessors();int maximumPoolSize = cpuNum * 2 ;pool = new ThreadPoolExecutor(maximumPoolSize - 2,maximumPoolSize,5L,   //5sTimeUnit.SECONDS,new LinkedBlockingQueue<>(),  //数组有界队列Executors.defaultThreadFactory(), //默认的线程工厂new ThreadPoolExecutor.AbortPolicy());  //直接抛异常,默认异常}return pool;}
}

第二步就是定义一个线程任务,到时将任务丢到线程池里面,其代码如下,该任务实现Callable接口,每个线程插入10万条,每次批量插入100条数据,大概就是需要1000次

@Data
public class ArchiveTask implements Callable {private MongoTemplate mongoTemplate;public ArchiveTask(MongoTemplate mongoTemplate){this.mongoTemplate = mongoTemplate;}@Overridepublic Object call() throws Exception {List<Archive> list = new ArrayList<>();for (int i = 1; i <= 100000; i++) {Archive archive = new Archive();archive.setCategory("score");archive.setId(SnowflakeUtils.nextOrderId());archive.setParentId(SnowflakeUtils.nextOrderId());Map<String,String> map = new HashMap<>();StringBuilder sb = new StringBuilder();for (int j = 0; j < 15; j++) {sb.append(UUID.randomUUID());}map.put("key" + i, sb.toString());archive.setContent(JSON.toJSONString(map));list.add(archive);if (i%100 == 0){mongoTemplate.insertAll(list);list.clear();	//手动gc,100个对象没被引用会被回收list = new ArrayList<>();}}return null;}
}

最后定义一个测试类或者一个接口,我这边使用接口,部分代码如下,循环100次,就是会创建100个线程任务,随后将这个线程任务丢到线程池中,100乘以100000就是1千万条数据

@Resource
private MongoTemplate mongoTemplate;
static ThreadPoolExecutor threadPool = ThreadPoolUtil.getThreadPool();
@GetMapping("/add")
public void test(){for (int i = 0; i < 100; i++) {ArchiveTask archiveTask = new ArchiveTask(mongoTemplate);threadPool.submit(archiveTask);}log.info("数据添加完成");
}
3,一千万数据性能测试

mongodb性能测试,此时archive 集合中已有10134114条数据,平均每条数据大小674字节,1千多万条,此时的存储大小为5.5个g,索引的总大小为459m

接下来通过唯一索引查询一条数据,这里直接通过parentId查询一条数据,此时数据还是在不断插入的

db.archive.find({parentId:"2405291858848274156091867143"})

是的,如下图所示,1000多万条数据里面查询,只需要25ms即可将数据放回,当然这里没有在高流量的情况下进行压测。

在这里插入图片描述

4,两千万数据性能测试

此时archive集合来到了两千万条,每条数据和之前一样,平均大小是674字节,数据总大小来到了10.92G,内存大小12.65g,索引总大小是913m
在这里插入图片描述

接下来测试查询效率,依旧使用上面的这个parentId,由于设置的是parentId+category的联合唯一索引,接下来两个参数一起查

db.archive.find({parentId:"2405291858848274156091867143",category:"score"})

2000万的数据查询结果如下,只需要21ms,和上面的25ms慢了将近4ms,但是这4ms可以忽略

在这里插入图片描述

5,五千万数据性能测试

由于70G的磁盘容量已经只剩48G,因此在content字段将500字节的值调小,调整到150个字节,以便能插入更多数据。将上面的StringBuilder拼接的15个uuid改成1个uuid

map.put("key" + i,UUID.randomUUID().toString());

此时数据来到50245694条数据,每条数据平均大小372kb,总存储大小12.66g,内存中的总大小17.45g,索引大小目前只有2.8g

在这里插入图片描述

为了保证拿到的parentId是一次没有查询过的,手动的插入一批数据,手动单条插入20条数据,耗时600ms,在插入数据时会改变索引,插入数据会稍微慢些。此时的插入操作都是在多线程插入大量数据的时候测试的

db.archive.insertOne({parentId:"2024111222337",category:"score1",content:"cbasbsadhpasdbsaodgs"})
db.archive.insertOne({parentId:"2024111222337",category:"score2",content:"cbasbsadhpasdbsaodgs"})
....

此时第一次查询这条数据,共耗时153ms,共查出20条数据

在这里插入图片描述

再第二次查询之后,花费78ms,内部应该也是会将查询结果加入到缓存中,方便第二次查询

在这里插入图片描述

在上面的插入操作中由于会破坏到索引结构,因此耗时久一点。接下来看这个更新操作,

db.archive.updateOne({ parentId: "2024111222337",category:"score1" },{ $set: { content: "cbasbsadhpasdbsaodgsscore" } }
);

其结果如下,更新了一条数据,只花费了13毫秒的时间,因此更新操作速度是很快的。由于这里每一条数据都是唯一数据,因此不测试批量更新

在这里插入图片描述

最后测试删除数据,将这20条数据全部删除,总共花费18毫秒

在这里插入图片描述

6,一亿条数据性能测试

数据通过多线程+批量插入的方式来到一亿条,存储大小15.5g,索引长度是6g

db.archive.countDocuments()  //查询共有多少条数据
100082694

在这里插入图片描述

接下来往里面重新插入一部分数据,往里面插入20条数据,大概花费160多ms,插入数据会导致索引重构,所以耗时久一些,批量插入性能会更快。重新插入的数据可以保证这条数据没被查过,并且知道parentId是什么

db.archive.insertOne({parentId:"20240531101059",category:"score1",content:"abcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxyabcdefghijklmnopqrstuvwxy"})
....

接下来测试查询数据,只需要19ms

db.archive.find({parentId:"20240531101054"},{parentId:1,category:1}) //只返回部分字段
db.archive.find({parentId:"20240531101058"})

在这里插入图片描述

更新数据如下,只需要10ms

db.archive.updateOne({ parentId: "20240531101059",category:"score1" },{ $set: { content: "cbasbsadhpasdbsaodgsscore" } }
);

在这里插入图片描述

7,压测

以下压测都是数据达到1亿之后进行测试的,并且都是使用的2核4g的服务器

在1s内同时1000个线程插入数据,每个线程插入20条数据,中位数24,吞吐量391

在这里插入图片描述

在1s内10000个线程插入数据,也是每个线程批量插入20条数据,可以发现就算是2核4g这么垃圾的轻量级服务器,10000qps也是毫无压力的

在这里插入图片描述

插入数据会破坏索引,相对于修改和查询是更慢的,接下来测试1s内10000个线程同时执行增改查,吞吐量可以达到2251.7

在这里插入图片描述

部分代码片段如下,让10000个线程随机的执行增改查的操作,在1s内是毫无压力的

在这里插入图片描述

8,总结

通过上面的数据以及mongodb的响应来看,mongodb的性能还是非常不错的。看看GPT对这种数据的评价,gpt也认为mongodb是非常合适的。当然不管什么数据和业务,只要其本质是 json 数据,不管json内部结构多复杂,用mongodb都是非常合适的。mongodb还适合存一些订单数据,地理数据,大数据等等,其应用范围是非常广泛的

在这里插入图片描述

这篇关于【Mongodb】Mongodb亿级数据性能测试和压测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1037007

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

字节面试 | 如何测试RocketMQ、RocketMQ?

字节面试:RocketMQ是怎么测试的呢? 答: 首先保证消息的消费正确、设计逆向用例,在验证消息内容为空等情况时的消费正确性; 推送大批量MQ,通过Admin控制台查看MQ消费的情况,是否出现消费假死、TPS是否正常等等问题。(上述都是临场发挥,但是RocketMQ真正的测试点,还真的需要探讨) 01 先了解RocketMQ 作为测试也是要简单了解RocketMQ。简单来说,就是一个分

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置