LLM大语言模型(十六):最新开源 GLM4-9B 本地部署,带不动,根本带不动

本文主要是介绍LLM大语言模型(十六):最新开源 GLM4-9B 本地部署,带不动,根本带不动,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

本机环境

GLM4代码库下载

模型文件下载:文件很大

修改为从本地模型文件启动

启动模型cli对话demo

慢,巨慢,一个字一个字的蹦

GPU资源使用情况 

GLM3资源使用情况对比


前言

GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。

在语义、数学、推理、代码和知识等多方面的数据集测评中, GLM-4-9B 及其人类偏好对齐的版本 GLM-4-9B-Chat 均表现出超越 Llama-3-8B 的卓越性能。

除了能进行多轮对话,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理(支持最大 128K 上下文)等高级功能。

本代模型增加了多语言支持,支持包括日语,韩语,德语在内的 26 种语言。

我们还推出了支持 1M 上下文长度(约 200 万中文字符)的 GLM-4-9B-Chat-1M 模型和基于 GLM-4-9B 的多模态模型 GLM-4V-9B。GLM-4V-9B 具备 1120 * 1120 高分辨率下的中英双语多轮对话能力,在中英文综合能力、感知推理、文字识别、图表理解等多方面多模态评测中,GLM-4V-9B 表现出超越 GPT-4-turbo-2024-04-09、Gemini 1.0 Pro、Qwen-VL-Max 和 Claude 3 Opus 的卓越性能。

本机环境

OS:Windows

CPU:AMD Ryzen 5 3600X 6-Core Processor

Mem:32GB

GPU:RTX 4060Ti 16G

GLM4代码库下载

参考:LLM大语言模型(一):ChatGLM3-6B本地部署_llm3 部署-CSDN博客

# 下载代码库
https://github.com/THUDM/GLM-4.git

模型文件下载:文件很大

建议从modelscope下载模型,这样就不用担心网络问题了。

模型链接如下: 

glm-4-9b-chat汇聚各领域最先进的机器学习模型,提供模型探索体验、推理、训练、部署和应用的一站式服务。icon-default.png?t=N7T8https://modelscope.cn/models/ZhipuAI/glm-4-9b-chat/files

git lfs install # 以安装则忽略
git clone https://www.modelscope.cn/ZhipuAI/glm-4-9b-chat.git

做好心理准备:接近20G(我的带宽只有300Mbps~~)

修改为从本地模型文件启动

修改此文件basic_demo/trans_cli_demo.py

修改这一行:

MODEL_PATH = os.environ.get('MODEL_PATH', 'D:\github\glm-4-9b-chat') 该为你下载的模型文件夹

"""
This script creates a CLI demo with transformers backend for the glm-4-9b model,
allowing users to interact with the model through a command-line interface.Usage:
- Run the script to start the CLI demo.
- Interact with the model by typing questions and receiving responses.Note: The script includes a modification to handle markdown to plain text conversion,
ensuring that the CLI interface displays formatted text correctly.
"""import os
import torch
from threading import Thread
from typing import Union
from pathlib import Path
from peft import AutoPeftModelForCausalLM, PeftModelForCausalLM
from transformers import (AutoModelForCausalLM,AutoTokenizer,PreTrainedModel,PreTrainedTokenizer,PreTrainedTokenizerFast,StoppingCriteria,StoppingCriteriaList,TextIteratorStreamer
)ModelType = Union[PreTrainedModel, PeftModelForCausalLM]
TokenizerType = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]# 改为你下载的模型文件夹
MODEL_PATH = os.environ.get('MODEL_PATH', 'D:\github\glm-4-9b-chat')def load_model_and_tokenizer(model_dir: Union[str, Path], trust_remote_code: bool = True
) -> tuple[ModelType, TokenizerType]:model_dir = Path(model_dir).expanduser().resolve()if (model_dir / 'adapter_config.json').exists():model = AutoPeftModelForCausalLM.from_pretrained(model_dir, trust_remote_code=trust_remote_code, device_map='auto')tokenizer_dir = model.peft_config['default'].base_model_name_or_pathelse:model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=trust_remote_code, device_map='auto')tokenizer_dir = model_dirtokenizer = AutoTokenizer.from_pretrained(tokenizer_dir, trust_remote_code=trust_remote_code, encode_special_tokens=True, use_fast=False)return model, tokenizermodel, tokenizer = load_model_and_tokenizer(MODEL_PATH, trust_remote_code=True)class StopOnTokens(StoppingCriteria):def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:stop_ids = model.config.eos_token_idfor stop_id in stop_ids:if input_ids[0][-1] == stop_id:return Truereturn Falseif __name__ == "__main__":history = []max_length = 8192top_p = 0.8temperature = 0.6stop = StopOnTokens()print("Welcome to the GLM-4-9B CLI chat. Type your messages below.")while True:user_input = input("\nYou: ")if user_input.lower() in ["exit", "quit"]:breakhistory.append([user_input, ""])messages = []for idx, (user_msg, model_msg) in enumerate(history):if idx == len(history) - 1 and not model_msg:messages.append({"role": "user", "content": user_msg})breakif user_msg:messages.append({"role": "user", "content": user_msg})if model_msg:messages.append({"role": "assistant", "content": model_msg})model_inputs = tokenizer.apply_chat_template(messages,add_generation_prompt=True,tokenize=True,return_tensors="pt").to(model.device)streamer = TextIteratorStreamer(tokenizer=tokenizer,timeout=60,skip_prompt=True,skip_special_tokens=True)generate_kwargs = {"input_ids": model_inputs,"streamer": streamer,"max_new_tokens": max_length,"do_sample": True,"top_p": top_p,"temperature": temperature,"stopping_criteria": StoppingCriteriaList([stop]),"repetition_penalty": 1.2,"eos_token_id": model.config.eos_token_id,}t = Thread(target=model.generate, kwargs=generate_kwargs)t.start()print("GLM-4:", end="", flush=True)for new_token in streamer:if new_token:print(new_token, end="", flush=True)history[-1][1] += new_tokenhistory[-1][1] = history[-1][1].strip()

启动模型cli对话demo

运行该py文件即可,效果如下:

模型运行时会报个warning:

C:\Users\Administrator\.cache\huggingface\modules\transformers_modules\glm-4-9b-chat\modeling_chatglm.pm.py:189: UserWarning: 1Torch was not compiled with flash attention. (Triggered internally at C:\cb\pytorc000h_1000000000000\work\aten\src\ATen\native\transformers\cuda\sdp_utils.cpp:263.)
  context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer, 

不过也没影响运行。

慢,巨慢,一个字一个字的蹦

GPU资源使用情况 

  • 16G显存,使用率90%+
  • 内存使用16G,50%

GLM3资源使用情况对比

这篇关于LLM大语言模型(十六):最新开源 GLM4-9B 本地部署,带不动,根本带不动的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1035532

相关文章

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言