基于聚类与统计检验深度挖掘电商用户行为

2024-06-06 05:28

本文主要是介绍基于聚类与统计检验深度挖掘电商用户行为,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.项目背景

在当今竞争激烈的电商市场中,了解用户的行为和需求对于制定成功的市场策略至关重要,本项目通过建立RFM模型、K-Means聚类模型,将1000个用户进行划分,针对不同类的用户,提出不同的营销策略,最后通过统计检验来探究影响用户消费行为的因素和影响用户上网行为的因素,通过这些分析,商家能够更好地理解消费者,从而制定更有效的市场策略,满足用户期望,提升用户体验,最终推动业务发展。

2.数据说明

字段说明
User_ID每个用户的唯一标识符,便于追踪和分析。
Age用户的年龄,提供对人口统计偏好的洞察。
Gender用户的性别,使能性别特定的推荐和定位。
Location用户所在地区:郊区、农村、城市,影响偏好和购物习惯。
Income用户的收入水平,表明购买力和支付能力。
Interests用户的兴趣,如运动、时尚、技术等,指导内容和产品推荐。
Last_Login_Days_Ago用户上次登录以来的天数,反映参与频率。
Purchase_Frequency用户进行购买的频率,表明购物习惯和忠诚度。
Average_Order_Value用户下单的平均价值,对定价和促销策略至关重要。
Total_Spending用户消费的总金额,表明终身价值和购买行为。
Product_Category_Preference用户偏好的特定产品类别。
Time_Spent_on_Site_Minutes用户在电子商务平台上花费的时间,表明参与程度。
Pages_Viewed用户在访问期间浏览的页面数量,反映浏览活动和兴趣。
Newsletter_Subscription用户是否订阅了营销活动通知。

3.Python库导入及数据读取

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from wordcloud import WordCloud
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from scipy import stats
from scipy.stats import spearmanr,pointbiserialr, f_oneway,chi2_contingency
import warnings
warnings.filterwarnings('ignore')
data = pd.read_csv(r'D:\Desktop\商业数据分析案例\电商用户行为数据集\user_personalized_features.csv')

4.数据预览

查看数据维度

(1000, 15)

查看数据信息

查看各列缺失值

查看重复值

0

查看分类特征的唯一值

绘制箱线图来观察是否存在异常值

总体来看,数据集的质量较高,没有缺失值、重复值和异常值,分类特征的唯一值分布合理,直接用这个数据进行分析。

5.描述性分析

用户基本信息:

购物行为:

网站使用情况:

这篇关于基于聚类与统计检验深度挖掘电商用户行为的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1035204

相关文章

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

韦季李输入法_输入法和鼠标的深度融合

在数字化输入的新纪元,传统键盘输入方式正悄然进化。以往,面对实体键盘,我们常需目光游离于屏幕与键盘之间,以确认指尖下的精准位置。而屏幕键盘虽直观可见,却常因占据屏幕空间,迫使我们在操作与视野间做出妥协,频繁调整布局以兼顾输入与界面浏览。 幸而,韦季李输入法的横空出世,彻底颠覆了这一现状。它不仅对输入界面进行了革命性的重构,更巧妙地将鼠标这一传统外设融入其中,开创了一种前所未有的交互体验。 想象

flume系列之:查看flume系统日志、查看统计flume日志类型、查看flume日志

遍历指定目录下多个文件查找指定内容 服务器系统日志会记录flume相关日志 cat /var/log/messages |grep -i oom 查找系统日志中关于flume的指定日志 import osdef search_string_in_files(directory, search_string):count = 0

hdu4267区间统计

题意:给一些数,有两种操作,一种是在[a,b] 区间内,对(i - a)% k == 0 的加value,另一种操作是询问某个位置的值。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import

hdu4417区间统计

给你一个数列{An},然后有m次查询,每次查询一段区间 [l,r] <= h 的值的个数。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamRead

hdu3333区间统计

题目大意:求一个区间内不重复数字的和,例如1 1 1 3,区间[1,4]的和为4。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;

实例:如何统计当前主机的连接状态和连接数

统计当前主机的连接状态和连接数 在 Linux 中,可使用 ss 命令来查看主机的网络连接状态。以下是统计当前主机连接状态和连接主机数量的具体操作。 1. 统计当前主机的连接状态 使用 ss 命令结合 grep、cut、sort 和 uniq 命令来统计当前主机的 TCP 连接状态。 ss -nta | grep -v '^State' | cut -d " " -f 1 | sort |

免费也能高质量!2024年免费录屏软件深度对比评测

我公司因为客户覆盖面广的原因经常会开远程会议,有时候说的内容比较广需要引用多份的数据,我记录起来有一定难度,所以一般都用录屏工具来记录会议内容。这次我们来一起探索有什么免费录屏工具可以提高我们的工作效率吧。 1.福晰录屏大师 链接直达:https://www.foxitsoftware.cn/REC/  录屏软件录屏功能就是本职,这款录屏工具在录屏模式上提供了多种选项,可以选择屏幕录制、窗口