【AI大模型】Transformers大模型库(三):特殊标记(special tokens)

2024-06-06 03:36

本文主要是介绍【AI大模型】Transformers大模型库(三):特殊标记(special tokens),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录​​​​​​​

一、引言 

二、特殊标记(special tokens)

2.1 概述

2.2 主要功能

2.3 代码示例

三、总结


一、引言 

 这里的Transformers指的是huggingface开发的大模型库,为huggingface上数以万计的预训练大模型提供预测、训练等服务。

🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨是让最先进的 NLP 技术人人易用。
🤗 Transformers 提供了便于快速下载和使用的API,让你可以把预训练模型用在给定文本、在你的数据集上微调然后通过 model hub 与社区共享。同时,每个定义的 Python 模块均完全独立,方便修改和快速研究实验。
🤗 Transformers 支持三个最热门的深度学习库: Jax, PyTorch 以及 TensorFlow — 并与之无缝整合。你可以直接使用一个框架训练你的模型然后用另一个加载和推理。

本文重点介绍特殊标记(special tokens)。

二、特殊标记(special tokens)

2.1 概述

在Hugging Face的transformers库中,不同的模型预训练时可能会使用特定的特殊标记(special tokens),这些标记用于帮助模型理解输入序列的结构,尤其是在处理序列分类、问答、文本生成等任务时。以下是一些常见的特殊标记及其用途:

2.2 主要功能

  •   [CLS] (Classification Token),编码101:通常用于序列分类任务的开始。模型会基于这个标记的输出来进行分类决策。
  • [SEP] (Separator Token),编码102:用于分隔序列中的不同部分,比如在问答任务中分隔问题和文本,在多句子输入中分隔句子。对应编码102
  • [PAD] (Padding Token),编码0:用于填充,确保所有批次的输入序列长度一致。它在模型计算时通常会被忽略。对应编码
  • [MASK],编码103:主要用于BERT的掩码语言模型任务,模型会预测这个标记所遮掩的单词是什么。
  • [UNK] (Unknown Token),编码100:代表词汇表中未包含的单词。
  • [BOS] (Beginning of Sentence) 和 [EOS] (End of Sentence):在某些模型中使用,分别表示句子的开始和结束 。 

2.3 代码示例

使用这些特殊标记的例子,比如在BERT模型中准备输入: 

from transformers import BertTokenizertokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
text = "Hello, I'm a text."
text_pair = "And this is another text."
inputs1 = tokenizer.encode_plus(text, text_pair, add_special_tokens=True)
print(inputs1) 
"""
{'input_ids': [101, 7592, 1010, 1045, 1005, 1049, 1037, 3793, 1012, 102, 1998, 2023, 2003, 2178, 3793, 1012, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
"""
print(tokenizer.decode(inputs1['input_ids']))
"""
[CLS] hello, i'm a text. [SEP] and this is another text. [SEP]
"""
inputs2 = tokenizer.encode(text,add_special_tokens=True)
print(inputs2)  
"""
[101, 7592, 1010, 1045, 1005, 1049, 1037, 3793, 1012, 102]
"""print(tokenizer.encode(['[UNK]','[SEP]','[PAD]', '[CLS]', '[MASK]','BOS','EOS']))#[101, 100, 102, 0, 101, 103, 100, 100, 102],去掉头部101和尾部102即为特殊标记的编码ID

将句子Hello, I'm a text进行encode时,会自动在开头和结尾加上[CLS]和[SEP],如果采用encode_plus对两个句子进行拼接,会加入[SEP]进行句子语义切割。告诉计算机这是两句话。

add_special_tokens=True为默认值,默认在encode编码的时候加入特殊标识,如果为False则可以不加入,但可能会丢失断句的信息。

三、总结

本文对使用transformers的特殊标记(special tokens)进行说明,特殊标记主要用于分割句子,在模型训练中引入“断句”、“开头”、“结尾”相关的信息。

如果您还有时间,可以看看我的其他文章:

《AI—工程篇》

AI智能体研发之路-工程篇(一):Docker助力AI智能体开发提效

AI智能体研发之路-工程篇(二):Dify智能体开发平台一键部署

AI智能体研发之路-工程篇(三):大模型推理服务框架Ollama一键部署

AI智能体研发之路-工程篇(四):大模型推理服务框架Xinference一键部署

AI智能体研发之路-工程篇(五):大模型推理服务框架LocalAI一键部署

《AI-模型篇》

AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用

AI智能体研发之路-模型篇(二):DeepSeek-V2-Chat 训练与推理实战

AI智能体研发之路-模型篇(三):中文大模型开、闭源之争

AI智能体研发之路-模型篇(四):一文入门pytorch开发

AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比

AI智能体研发之路-模型篇(六):【机器学习】基于tensorflow实现你的第一个DNN网络

AI智能体研发之路-模型篇(七):【机器学习】基于YOLOv10实现你的第一个视觉AI大模型

AI智能体研发之路-模型篇(八):【机器学习】Qwen1.5-14B-Chat大模型训练与推理实战

这篇关于【AI大模型】Transformers大模型库(三):特殊标记(special tokens)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1034979

相关文章

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Spring AI ectorStore的使用流程

《SpringAIectorStore的使用流程》SpringAI中的VectorStore是一种用于存储和检索高维向量数据的数据库或存储解决方案,它在AI应用中发挥着至关重要的作用,本文给大家介... 目录一、VectorStore的基本概念二、VectorStore的核心接口三、VectorStore的

基于Python实现一个PDF特殊字体提取工具

《基于Python实现一个PDF特殊字体提取工具》在PDF文档处理场景中,我们常常需要针对特定格式的文本内容进行提取分析,本文介绍的PDF特殊字体提取器是一款基于Python开发的桌面应用程序感兴趣的... 目录一、应用背景与功能概述二、技术架构与核心组件2.1 技术选型2.2 系统架构三、核心功能实现解析

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2