涨点神器!全局注意力+位置注意力,打造更强深度学习模型

本文主要是介绍涨点神器!全局注意力+位置注意力,打造更强深度学习模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

全局注意力结合位置注意力是学术界与工业界共同的研究热点,它可以有效提升深度学习模型的性能,助力涨点。

这种结合策略充分利用全局注意力(擅长捕捉序列或图像中的长距离依赖)和位置注意力(专注于序列中元素的具体位置)各自的优势,让模型在处理数据时同时考虑元素的内容及其在序列中的位置。这不仅提高了模型的表达能力,还能在保持计算效率的同时增强模型对复杂模式的理解和预测能力。

比如全局位置自注意力网络GPS-Net,通过空间自注意力学习结构化依赖性,并通过通道自注意力捕捉全局有序的语义和位置依赖性,在多个识别任务中超越了SOTA方法。

本文分享全局注意力+位置注意力8种创新结合方案,可借鉴的方法和创新点我做了简单介绍,已经开源的代码都整理了,方便同学们学习。

论文原文以及开源代码需要的同学看文末

Global Positional Self-Attention for Skeleton-Based Action Recognition

方法:论文介绍了一种新颖的全局位置自注意力网络(GPS-Net),可以表示基于骨骼的动作识别中的空间结构依赖和全局有序的语义信息。通过空间自注意和通道自注意,结构依赖和全局有序的语义和位置依赖可以捕获到。

创新点:

  • 引入了一种新颖的全局位置自注意网络,通过空间自注意和通道自注意两个模块来捕捉骨骼动作识别中的空间结构依赖和全局语义信息。这种网络结构简单而有效,能够准确地进行动作预测。

  • 提出了一种新的结构位置编码方法。通过定义一组基于测地距离的结构位置,将身体关节分成多个部分,并使用同一结构位置编码来编码每个部分的关节。这种编码方法能够反映身体的结构特征,并提高动作识别的性能。

Global Self-Attention Networks for Image Recognition

方法:论文中提出了一种新的全局自注意力模块GSA,它同时考虑了像素的内容和空间位置。这个模块包含两个并行的层次:内容注意力层:这一层基于像素的内容进行注意力的分配。位置注意力层:这一层根据像素的空间位置进行注意力的分配。

创新点:

  • 提出了一种新的全局自注意力模块,称为GSA模块,该模块同时考虑像素的内容和空间位置。该模块由并行的内容注意力分支和位置注意力分支组成,最后将它们的输出相加。相比于传统的空间卷积,该GSA模块具有更高的效率,并可以作为深度网络的主要组件。

  • 基于GSA模块提出了GSA网络,用GSA模块代替空间卷积来建模像素间的长距离相互作用。相比于使用卷积的网络,GSA网络在CIFAR-100和ImageNet数据集上取得了显著的性能提升,且使用的参数和计算量更少。

Combining Global and Local Attention with Positional Encoding for Video Summarization

方法:论文提出了一种新的监督视频摘要方法,该方法结合了全局和局部多头注意力机制,以在不同粒度级别发现帧依赖性的不同建模方式。此外,所使用的注意力机制还整合了一个编码视频帧时间位置的组件,这在生成视频摘要时非常重要。

创新点:

  • PGL-SUM模型采用了全局和局部多头注意力机制,以不同的粒度发现视频帧的依赖关系,进而提高视频摘要的性能。

  • PGL-SUM模型引入了绝对位置编码组件,用于编码视频帧的时间顺序,提高了视频摘要的时序连贯性。

  • 在SumMe数据集上的实验证明了PGL-SUM模型相对于现有注意力机制的有效性,并与其他最先进的有监督摘要方法竞争性能。

TransXNet: Learning Both Global and Local Dynamics with a Dual Dynamic Token Mixer for Visual Recognition

方法:本研究提出了一种高效的双动态令牌混合器(D-Mixer),利用重叠空间降维注意力(OSRA)和输入相关的深度卷积(IDConv)提供的混合特征提取。通过将基于D-Mixer的块堆叠到深层网络中,使用前面块中收集的局部和全局信息动态生成IDConv中的卷积核和OSRA中的注意力矩阵,从而赋予网络更强的表示能力,融合强大的归纳偏差和扩展的有效感受野。

创新点:

  • 提出了一种高效的双动态令牌混合器(D-Mixer),利用重叠空间缩减注意力(OSRA)和输入依赖深度卷积(IDConv)提供的混合特征提取。通过将基于D-Mixer的块堆叠到深度网络中,利用先前块中收集的局部和全局信息动态生成IDConv中的卷积核和OSRA中的注意力矩阵,通过融合强归纳偏差和扩展有效感受野,使网络具备更强的表示能力。

  • 设计了一种名为TransXNet的新型混合CNN-Transformer网络,通过交替使用D-Mixer和MS-FFN构建。在各种视觉任务中,TransXNet展现出了领先的性能。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“全局位置”获取全部论文+代码

码字不易,欢迎大家点赞评论收藏

这篇关于涨点神器!全局注意力+位置注意力,打造更强深度学习模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1034831

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

用Java打造简易计算器的实现步骤

《用Java打造简易计算器的实现步骤》:本文主要介绍如何设计和实现一个简单的Java命令行计算器程序,该程序能够执行基本的数学运算(加、减、乘、除),文中通过代码介绍的非常详细,需要的朋友可以参考... 目录目标:一、项目概述与功能规划二、代码实现步骤三、测试与优化四、总结与收获总结目标:简单计算器,设计

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

IDEA中的Kafka管理神器详解

《IDEA中的Kafka管理神器详解》这款基于IDEA插件实现的Kafka管理工具,能够在本地IDE环境中直接运行,简化了设置流程,为开发者提供了更加紧密集成、高效且直观的Kafka操作体验... 目录免安装:IDEA中的Kafka管理神器!简介安装必要的插件创建 Kafka 连接第一步:创建连接第二步:选

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用