基于百度接口的实时流式语音识别系统

2024-06-05 22:44

本文主要是介绍基于百度接口的实时流式语音识别系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

基于百度接口的实时流式语音识别系统

1. 简介

2. 需求分析

3. 系统架构

4. 模块设计

4.1 音频输入模块

4.2 WebSocket通信模块

4.3 音频处理模块

4.4 结果处理模块

5. 接口设计

5.1 WebSocket接口

5.2 音频输入接口

6. 流程图

程序说明文档

1. 安装依赖

2. 运行程序

3. 配置文件 (const.py)

4. 程序结构

5. 代码说明

5.1 主程序

代码说明

结论


基于百度接口的实时流式语音识别系统

1. 简介

本项目实现了一个实时流式语音识别系统,利用百度语音识别服务和WebSocket协议,实现从麦克风捕获音频数据并实时进行语音识别。该系统适用于需要将实时语音转换为文本的应用场景。

2. 需求分析
  • 实时捕获麦克风音频数据
  • 使用WebSocket与百度语音识别服务进行通信
  • 实时发送音频数据并接收识别结果
  • 提供可选的音频输入设备选择
3. 系统架构
  • 音频输入模块:使用PyAudio库捕获麦克风的音频数据。
  • WebSocket通信模块:使用websocket-client库与百度语音识别服务进行通信。
  • 音频处理模块:处理捕获的音频数据并通过WebSocket发送。
  • 结果处理模块:接收并处理百度语音识别服务返回的识别结果。
4. 模块设计
4.1 音频输入模块
  • 功能:从麦克风捕获音频数据并传递给WebSocket模块。
  • 实现:利用PyAudio库的回调函数实现音频数据的实时捕获。
4.2 WebSocket通信模块
  • 功能:与百度语音识别服务建立WebSocket连接,发送音频数据并接收识别结果。
  • 实现:使用websocket-client库实现WebSocket的连接、数据发送和接收。
4.3 音频处理模块
  • 功能:将捕获的音频数据按需处理并转换为适合发送的格式。
  • 实现:将音频数据转换为PCM格式并按帧发送。
4.4 结果处理模块
  • 功能:处理并显示百度语音识别服务返回的识别结果。
  • 实现:解析WebSocket返回的JSON数据并输出识别结果。
5. 接口设计
5.1 WebSocket接口
  • 连接URI:由const.URI定义
  • 连接参数:在连接建立时发送的起始参数帧,包含appid, appkey, dev_pid, cuid, sample, format等。
5.2 音频输入接口
  • 设备选择:列出可用的音频输入设备,用户选择设备索引。
6. 流程图
  1. 启动程序,列出可用音频输入设备,用户选择设备。
  2. 建立WebSocket连接。
  3. 发送起始参数帧。
  4. 开始捕获音频数据,通过WebSocket发送。
  5. 接收并处理识别结果。
  6. 发送结束帧,关闭连接。

程序说明文档

1. 安装依赖

首先,确保安装必要的库:

bash

Copy code

pip install websocket-client pyaudio

2. 运行程序

运行程序时,可以选择输入音频文件路径或者直接使用麦克风捕获音频:

python realtime_asr.py

3. 配置文件 (const.py)

在const.py文件中,需要配置以下参数:

python

Copy code

URI = "your_baidu_asr_service_uri"

APPID = "your_appid"

APPKEY = "your_appkey"

DEV_PID = 1537  # 选择合适的识别模型

4. 程序结构
  • realtime_asr.py:主程序文件,包含实时语音识别的实现。
  • const.py:配置文件,包含WebSocket URI和百度语音识别服务的appid和appkey。
5. 代码说明
5.1 主程序

python code

import websocketimport pyaudioimport threadingimport timeimport uuidimport jsonimport logging

import const

logger = logging.getLogger()

# 配置音频输入

CHUNK = 1024

FORMAT = pyaudio.paInt16

CHANNELS = 1

RATE = 16000

p = pyaudio.PyAudio()

# 列出所有音频设备

info = p.get_host_api_info_by_index(0)

numdevices = info.get('deviceCount')for i in range(0, numdevices):

    if (p.get_device_info_by_host_api_device_index(0, i).get('maxInputChannels')) > 0:

        print("Input Device id ", i, " - ", p.get_device_info_by_host_api_device_index(0, i).get('name'))

# 选择设备

device_index = int(input("Select device index: "))

def send_start_params(ws):

    req = {

        "type": "START",

        "data": {

            "appid": const.APPID,

            "appkey": const.APPKEY,

            "dev_pid": const.DEV_PID,

            "cuid": "yourself_defined_user_id",

            "sample": 16000,

            "format": "pcm"

        }

    }

    body = json.dumps(req)

    ws.send(body, websocket.ABNF.OPCODE_TEXT)

    logger.info("send START frame with params:" + body)

def send_audio(ws):

    def callback(in_data, frame_count, time_info, status):

        ws.send(in_data, websocket.ABNF.OPCODE_BINARY)

        return (in_data, pyaudio.paContinue)

    stream = p.open(format=FORMAT,

                    channels=CHANNELS,

                    rate=RATE,

                    input=True,

                    input_device_index=device_index,

                    frames_per_buffer=CHUNK,

                    stream_callback=callback)

    stream.start_stream()    

    while stream.is_active():

        time.sleep(0.1)

    stream.stop_stream()

    stream.close()

def send_finish(ws):

    req = {

        "type": "FINISH"

    }

    body = json.dumps(req)

    ws.send(body, websocket.ABNF.OPCODE_TEXT)

    logger.info("send FINISH frame")

def send_cancel(ws):

    req = {

        "type": "CANCEL"

    }

    body = json.dumps(req)

    ws.send(body, websocket.ABNF.OPCODE_TEXT)

    logger.info("send Cancel frame")

def on_open(ws):

    def run(*args):

        send_start_params(ws)

        send_audio(ws)

        send_finish(ws)

        logger.debug("thread terminating")

    threading.Thread(target=run).start()

def on_message(ws, message):

    logger.info("Response: " + message)

def on_error(ws, error):

    logger.error("error: " + str(error))

def on_close(ws):

    logger.info("ws close ...")

if __name__ == "__main__":

    logging.basicConfig(format='[%(asctime)-15s] [%(funcName)s()][%(levelname)s] %(message)s')

    logger.setLevel(logging.DEBUG)

    logger.info("begin")

    uri = const.URI + "?sn=" + str(uuid.uuid1())

    logger.info("uri is "+ uri)

    ws_app = websocket.WebSocketApp(uri,

                                    on_open=on_open,

                                    on_message=on_message,

                                    on_error=on_error,

                                    on_close=on_close)

    ws_app.run_forever()

代码说明

  • send_start_params(ws):发送识别开始的参数帧。
  • send_audio(ws):实时捕获麦克风音频并通过WebSocket发送。
  • send_finish(ws):发送识别结束的参数帧。
  • send_cancel(ws):发送取消识别的参数帧。
  • on_open(ws):WebSocket连接建立后的回调,启动一个线程发送音频数据。
  • on_message(ws, message):接收服务端返回的识别结果。
  • on_error(ws, error):处理连接错误。
  • on_close(ws):WebSocket连接关闭时的处理。

结论

本系统实现了从麦克风实时捕获音频并通过WebSocket与百度语音识别服务进行通信,实现实时语音识别的功能。该系统可应用于各种需要实时语音转文字的场景,如实时字幕、语音助手等。

这篇关于基于百度接口的实时流式语音识别系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1034384

相关文章

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时

Java 后端接口入参 - 联合前端VUE 使用AES完成入参出参加密解密

加密效果: 解密后的数据就是正常数据: 后端:使用的是spring-cloud框架,在gateway模块进行操作 <dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>30.0-jre</version></dependency> 编写一个AES加密

基于人工智能的智能家居语音控制系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 随着物联网(IoT)和人工智能技术的发展,智能家居语音控制系统已经成为现代家庭的一部分。通过语音控制设备,用户可以轻松实现对灯光、空调、门锁等家电的控制,提升生活的便捷性和舒适性。本文将介绍如何构建一个基于人工智能的智能家居语音控制系统,包括环境准备

java线程深度解析(一)——java new 接口?匿名内部类给你答案

http://blog.csdn.net/daybreak1209/article/details/51305477 一、内部类 1、内部类初识 一般,一个类里主要包含类的方法和属性,但在Java中还提出在类中继续定义类(内部类)的概念。 内部类的定义:类的内部定义类 先来看一个实例 [html]  view plain copy pu

模拟实现vector中的常见接口

insert void insert(iterator pos, const T& x){if (_finish == _endofstorage){int n = pos - _start;size_t newcapacity = capacity() == 0 ? 2 : capacity() * 2;reserve(newcapacity);pos = _start + n;//防止迭代

京东物流查询|开发者调用API接口实现

快递聚合查询的优势 1、高效整合多种快递信息。2、实时动态更新。3、自动化管理流程。 聚合国内外1500家快递公司的物流信息查询服务,使用API接口查询京东物流的便捷步骤,首先选择专业的数据平台的快递API接口:物流快递查询API接口-单号查询API - 探数数据 以下示例是参考的示例代码: import requestsurl = "http://api.tanshuapi.com/a