【一百零五】【算法分析与设计】分解质因数,952. 按公因数计算最大组件大小,204. 计数质数,分解质因数,埃式筛

本文主要是介绍【一百零五】【算法分析与设计】分解质因数,952. 按公因数计算最大组件大小,204. 计数质数,分解质因数,埃式筛,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分解质因数

题目:分解质因数

题目描述

给定一个正整数 n,编写一个程序将其分解为质因数,并按从小到大的顺序输出这些质因数。

输入格式

一个正整数 n,其中 n 的范围是 1 <= n <= 10^18

输出格式

按从小到大的顺序输出 n 的质因数,每个质因数占一行。

输入示例

4012100

输出示例

2
5
53
757

提示

程序需要处理大整数,因此使用 long long 类型。

质因数应该按从小到大的顺序输出。

每个质因数只输出一次,即使一个质因数在 n 中出现多次。

一个任意的正整数 n 可以写成质因数的乘积形式: n = p 1 k 1 × p 2 k 2 × ⋯ × p m k m n=p1^{k1}×p2^{k2}×⋯×pm^{km} n=p1k1×p2k2××pmkm

其中, p 1 , p 2 , … , p p1,p2,…,p p1,p2,,p 是质数, k 1 , k 2 , … , k k1,k2,…,k k1,k2,,k 是对应的正整数指数。这个表示法称为整数的质因数分解。

2,3是最小的两个质数,用for循环从2开始遍历,一开始 t e m p = p 1 k 1 × p 2 k 2 × ⋯ × p m k m temp=p1^{k1}×p2^{k2}×⋯×pm^{km} temp=p1k1×p2k2××pmkm

每次遇到的temp%i==0,此时i表示的是其中一个质因数。

最开始的temp%i0,i2,i确实是质因数,接着把temp中有关2的因子全部除掉,接着循环。

如果temp%i==0,那么i一定是temp的质因子,首先i一定是temp的因子,那为什么是质因子呢?

如果i不是质数,说明比i小的一个数k是i的因子,那么之前i一定遍历过k,并且temp中把k的因子全部去掉,temp%i一定不等于0.

正是因为temp每次去掉所有的质因子,所以temp%i==0成立i一定是temp的质因子.

#include<bits/stdc++.h> // 包含所有标准库头文件
using namespace std;#define int long long // 定义 int 为 long long 类型,方便处理大整数
#define _(i,a,b) for(int i=a;i<=b;i++) // 定义从 a 到 b 的循环
#define _1(i,a,b) for(int i=a;i>=b;i--) // 定义从 a 到 b 的反向循环int n; // 定义全局变量 n
// 输入: 4012100
// 输出: 2, 5, 53, 757
vector<int> ret; // 用于存储质因数的向量
void solve() {ret.clear(); // 清空存储质因数的向量int temp = n; // 临时变量 temp 用于保存 n 的值_(i, 2, n) { // 从 2 开始遍历到 nif (i * i > temp) break; // 如果 i 的平方大于 temp,跳出循环if (temp % i == 0) { // 如果 temp 能被 i 整除ret.push_back(i); // 将 i 存入结果向量中while (!(temp % i != 0)) { // 当 temp 能被 i 整除时temp /= i; // 将 temp 除以 i}}}if (temp != 1) ret.push_back(temp); // 如果 temp 不等于 1,将 temp 存入结果向量for (auto& x : ret) cout << x << endl; // 输出结果向量中的每个质因数
}
signed main() {cin >> n; // 输入 nsolve(); // 调用求解函数
}

952. 按公因数计算最大组件大小

给定一个由不同正整数的组成的非空数组 nums ,考虑下面的图:

  • nums.length 个节点,按从 nums[0]nums[nums.length - 1] 标记;

  • 只有当 nums[i]nums[j] 共用一个大于 1 的公因数时,nums[i]nums[j]之间才有一条边。

返回 图中最大连通组件的大小

示例 1:

在这里插入图片描述

输入: nums = [4,6,15,35] 输出: 4

示例 2:

在这里插入图片描述

输入: nums = [20,50,9,63] 输出: 2

示例 3:

在这里插入图片描述

输入: nums = [2,3,6,7,4,12,21,39] 输出: 8

提示:

  • 1 <= nums.length <= 2 * 10(4)

  • 1 <= nums[i] <= 10(5)

  • nums 中所有值都 不同

对于每一个数,我们可以分解质因数得到他的每一个质因数.

可以用map存储第一次拥有某个质因数的元素下标.

遍历nums数组,对于i位置元素,分解他的质因数,然后把i元素和他的质因数第一次出现的元素合并到一个集合里面.

并查集.

在这里插入图片描述

#define _(i, a, b) for (int i = a; i <= b; i++) // 定义一个从 a 到 b 的循环宏
#define _1(i, a, b) for (int i = a; i >= b; i--) // 定义一个从 a 到 b 的反向循环宏class Solution {
public:vector<int> nums; // 存储输入数组int ret; // 存储结果,即最大连通组件的大小vector<int> father; // 并查集的父节点数组vector<int> sizee; // 并查集的大小数组map<int, int> yinzi_index; // 存储质因数及其首次出现的索引int n; // 存储输入数组的长度// 并查集的查找函数int findd(int i) {if (father[i] != i) // 如果当前节点不是其自身的父节点father[i] = findd(father[i]); // 递归查找其父节点,并进行路径压缩return father[i]; // 返回父节点}// 并查集的合并函数//并查集的合并函数,维护sizee和father数据,先计算x和y的代表节点下标,这样sizee和father谁先谁后都无所谓了.//重要的是如果fx!=fy才需要维护sizeevoid unionn(int x, int y) {int fx = findd(x); // 查找 x 的父节点int fy = findd(y); // 查找 y 的父节点if (fx != fy) // 如果 x 和 y 的父节点不同sizee[fy] += sizee[fx]; // 合并集合,并更新集合大小father[fx] = father[fy]; // 将 x 的父节点指向 y 的父节点}// 核心解决函数void solve() {ret = 1; // 初始化结果为 1n = nums.size(); // 获取输入数组的长度yinzi_index.clear(); // 清空质因数索引的映射表father.assign(n, 0), sizee.assign(n, 1); // 初始化并查集_(i, 0, n - 1) { father[i] = i; } // 将每个节点的父节点指向其自身// 遍历输入数组_(i, 0, n - 1) {//利用分解质因子的思维获取所有的质因子int temp = nums[i]; // 获取当前元素_(j, 2, nums[i]) { // 从 2 开始遍历到当前元素if (j * j > temp) // 如果 j 的平方大于当前元素break; // 跳出循环if (temp % j == 0) { // 如果 j 是当前元素的因子//对于i位置的元素,j是i的一个质因子if (yinzi_index.count(j)) { // 如果 j 已经存在于质因数映射表中//如果之前j质因子出现过,找到第一次出现的下标,然后合并int index = yinzi_index[j]; // 获取 j 第一次出现的索引unionn(index, i); // 合并当前元素和 j 第一次出现的元素ret = max(ret, sizee[findd(i)]); // 更新最大连通组件的大小} else {//如果是第一次出现,那么就没有需要合并的元素.yinzi_index[j] = i; // 将 j 的首次出现索引设置为当前索引}//分解质因数需要把确定的质因数全部去掉while (!(temp % j != 0)) { // 将当前元素中所有 j 的因子去掉temp /= j;}}}//对于i位置元素,如果temp!=1说明temp也是i的质因数,这一点不要忘记了.if (temp != 1) { // 如果剩余部分不是 1,说明 temp 也是一个质因数if (yinzi_index.count(temp)) { // 如果 temp 已经存在于质因数映射表中int index = yinzi_index[temp]; // 获取 temp 第一次出现的索引unionn(index, i); // 合并当前元素和 temp 第一次出现的元素ret = max(ret, sizee[findd(i)]); // 更新最大连通组件的大小} else {yinzi_index[temp] = i; // 将 temp 的首次出现索引设置为当前索引}}}}// 主函数,计算图中最大连通组件的大小int largestComponentSize(vector<int>& _nums) {ios::sync_with_stdio(0), cin.tie(0), cout.tie(0); // 优化输入输出nums = _nums; // 将输入数组赋值给成员变量solve(); // 调用求解函数return ret; // 返回结果}
};

204. 计数质数

给定整数 n ,返回 所有小于非负整数 n 的质数的数量

示例 1:

输入: n = 10 输出: 4 解释: 小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。

示例 2:

输入: n = 0 输出: 0

示例 3:

输入: n = 1 输出 :0

提示:

  • 0 <= n <= 5 * 10(6)

for循环从2开始遍历,保证每一次i都可以判断是否是n的质因子.

第一次遇到的是质因子,然后把i所有的倍数设置为不是质数.

剪枝,如果当前i不是质数,那么i的倍数一定被设置完了.直接continue.

class Solution {
public:int ret; // 存储质数的数量vector<bool> visited; // 标记数组,用于标记非质数int n; // 存储给定的上限数 nvoid solve() {visited.assign(n, false); // 初始化标记数组,初始时假设所有数都是质数for(int i = 2; i < n; i++) { // 从 2 开始遍历到 n-1if (!visited[i]) { // 如果当前数 i 没有被标记为非质数ret++; // 说明 i 是质数,计数器增加for (int j = i * 2; j < n; j += i) { // 标记所有 i 的倍数为非质数visited[j] = true; // 标记 j 为非质数}}}}int countPrimes(int _n) {ios::sync_with_stdio(0), cout.tie(0), cin.tie(0); // 优化输入输出n = _n; // 将输入的 n 赋值给成员变量 nsolve(); // 调用求解函数return ret; // 返回质数的数量}
};

结尾

最后,感谢您阅读我的文章,希望这些内容能够对您有所启发和帮助。如果您有任何问题或想要分享您的观点,请随时在评论区留言。

同时,不要忘记订阅我的博客以获取更多有趣的内容。在未来的文章中,我将继续探讨这个话题的不同方面,为您呈现更多深度和见解。

谢谢您的支持,期待与您在下一篇文章中再次相遇!

这篇关于【一百零五】【算法分析与设计】分解质因数,952. 按公因数计算最大组件大小,204. 计数质数,分解质因数,埃式筛的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1033433

相关文章

C#中图片如何自适应pictureBox大小

《C#中图片如何自适应pictureBox大小》文章描述了如何在C#中实现图片自适应pictureBox大小,并展示修改前后的效果,修改步骤包括两步,作者分享了个人经验,希望对大家有所帮助... 目录C#图片自适应pictureBox大小编程修改步骤总结C#图片自适应pictureBox大小上图中“z轴

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

Python中的可视化设计与UI界面实现

《Python中的可视化设计与UI界面实现》本文介绍了如何使用Python创建用户界面(UI),包括使用Tkinter、PyQt、Kivy等库进行基本窗口、动态图表和动画效果的实现,通过示例代码,展示... 目录从像素到界面:python带你玩转UI设计示例:使用Tkinter创建一个简单的窗口绘图魔法:用

基于Qt Qml实现时间轴组件

《基于QtQml实现时间轴组件》时间轴组件是现代用户界面中常见的元素,用于按时间顺序展示事件,本文主要为大家详细介绍了如何使用Qml实现一个简单的时间轴组件,需要的可以参考下... 目录写在前面效果图组件概述实现细节1. 组件结构2. 属性定义3. 数据模型4. 事件项的添加和排序5. 事件项的渲染如何使用

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规