【优选算法】优先级队列 {经验总结:优先级队列解决TopK问题,利用大小堆维护数据流中的中位数;相关编程题解析}

本文主要是介绍【优选算法】优先级队列 {经验总结:优先级队列解决TopK问题,利用大小堆维护数据流中的中位数;相关编程题解析},希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、经验总结

优先级队列(堆),常用于在集合中筛选最值或解决TopK问题。

提示:对于固定序列的TopK问题,最优解决方案是快速选择算法,时间复杂度为O(N)比堆算法O(NlogK)更优;而对于动态维护数据流中的TopK,最优解决方案是堆算法,每次添加数据后筛选,时间复杂度为O(logK)比快速选择算法O(N)更优;

优先级队列如何解决TopK问题?

  1. 创建一个大小为K的堆
  2. 循环
    1. 将数组中的元素依次进堆
    2. 判断堆中的元素个数是否大于K,如果大于K就pop弹出堆顶元素
  3. 将数组中的所有元素全部筛选一遍后,堆中剩余的K个元素就是最大(小)的K个元素

TopK问题选用大根堆还是小根堆?

  • 如果要选出最大的K个数,就选用小根堆;
  • 如果要选出最小的K个数,就选用大根堆;

利用大小堆维护数据流中的中位数

  1. 创建一个大堆left用于存储数据流的前一半(升序),一个小堆right用于存储后一半
  2. 控制left的元素个数m和right的元素个数n满足:m==n或m==n+1
  3. 数据流的中位数:当m==n时,mid=(left.top()+right.top())/2;当m==n+1时,mid=left.top();
  4. 新增元素:将新元素与left.top()(或right.top())比较,决定加入left还是right。完成插入后,记得调整两个堆的元素个数使其满足规则。

二、相关编程题

2.1 最后一块石头的重量

题目链接

1046. 最后一块石头的重量 - 力扣(LeetCode)

题目描述

在这里插入图片描述

算法原理

利用堆结构筛选最大值

编写代码

class Solution {
public:int lastStoneWeight(vector<int>& stones) {priority_queue<int> heap;for(auto e : stones) heap.push(e);while(heap.size() >= 2){int s1 = heap.top();heap.pop();int s2 = heap.top();heap.pop();if(s1 > s2) heap.push(s1-s2);}if(heap.size() == 0) return 0;else return heap.top();}
};

2.2 数据流中的第 K 大元素

题目链接

703. 数据流中的第 K 大元素 - 力扣(LeetCode)

题目描述

在这里插入图片描述

算法原理

在这里插入图片描述
这道题更适合使用堆解决,因为add函数插入一个数字后返回当前数据中的第K大的元素,如果使用快速选则算法,复杂度为O(N);而使用堆算法,复杂度为O(logK)

编写代码

class KthLargest {priority_queue<int, vector<int>, greater<int>> _heap;int _k;
public:KthLargest(int k, vector<int>& nums) {_k = k;for(auto e : nums) add(e);}int add(int val) {_heap.push(val);if(_heap.size() > _k)_heap.pop();return _heap.top();}
};

2.3 前K个高频单词

题目链接

692. 前K个高频单词 - 力扣(LeetCode)

题目描述

在这里插入图片描述

算法原理

在这里插入图片描述

编写代码

class Solution {typedef pair<string, int> PSI;struct Cmp{bool operator()(const PSI &left, const PSI &right){if(left.second != right.second) //出现频次不同,选出高频单词,按照小根堆的方式排列return left.second > right.second;elsereturn left.first < right.first; //出现频次相同,按字典序排序,按照大根堆的方式排列}};
public:vector<string> topKFrequent(vector<string>& words, int k) {unordered_map<string, int> hash;priority_queue<PSI, vector<PSI>, Cmp> heap;vector<string> ret(k);//统计所有单词的出现频次for(auto &str:words){++hash[str];} //用一个大小为k的堆筛选TopKfor(auto &psi:hash){heap.push(psi);if(heap.size() > k)heap.pop();}//将结果倒着放入数组for(int i = k-1; i >= 0; --i){ret[i] = heap.top().first;heap.pop();}return ret;}
};

2.4 数据流的中位数

题目链接

295. 数据流的中位数 - 力扣(LeetCode)

题目描述

在这里插入图片描述

算法原理

在这里插入图片描述

编写代码

class MedianFinder {priority_queue<int> left; //大根堆priority_queue<int, vector<int>, greater<int>> right; //小根堆
public:MedianFinder() {}void addNum(int num) {if(left.size() > right.size()) //m > n{int x = left.top();if(num <= x){left.push(num);left.pop();right.push(x);}else{right.push(num);}}else //m == n{int y = right.empty()? 0:right.top();if(right.empty() || num < y){left.push(num);}else{right.push(num);right.pop();left.push(y);}}}double findMedian() {if(left.size() > right.size()) //m > nreturn (double)left.top();else //m == nreturn (left.top()+right.top())/2.0;}
};

这篇关于【优选算法】优先级队列 {经验总结:优先级队列解决TopK问题,利用大小堆维护数据流中的中位数;相关编程题解析}的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1032775

相关文章

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

关于MongoDB图片URL存储异常问题以及解决

《关于MongoDB图片URL存储异常问题以及解决》:本文主要介绍关于MongoDB图片URL存储异常问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录MongoDB图片URL存储异常问题项目场景问题描述原因分析解决方案预防措施js总结MongoDB图

SpringBoot项目中报错The field screenShot exceeds its maximum permitted size of 1048576 bytes.的问题及解决

《SpringBoot项目中报错ThefieldscreenShotexceedsitsmaximumpermittedsizeof1048576bytes.的问题及解决》这篇文章... 目录项目场景问题描述原因分析解决方案总结项目场景javascript提示:项目相关背景:项目场景:基于Spring

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

最详细安装 PostgreSQL方法及常见问题解决

《最详细安装PostgreSQL方法及常见问题解决》:本文主要介绍最详细安装PostgreSQL方法及常见问题解决,介绍了在Windows系统上安装PostgreSQL及Linux系统上安装Po... 目录一、在 Windows 系统上安装 PostgreSQL1. 下载 PostgreSQL 安装包2.

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

usb接口驱动异常问题常用解决方案

《usb接口驱动异常问题常用解决方案》当遇到USB接口驱动异常时,可以通过多种方法来解决,其中主要就包括重装USB控制器、禁用USB选择性暂停设置、更新或安装新的主板驱动等... usb接口驱动异常怎么办,USB接口驱动异常是常见问题,通常由驱动损坏、系统更新冲突、硬件故障或电源管理设置导致。以下是常用解决

Mysql如何解决死锁问题

《Mysql如何解决死锁问题》:本文主要介绍Mysql如何解决死锁问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录【一】mysql中锁分类和加锁情况【1】按锁的粒度分类全局锁表级锁行级锁【2】按锁的模式分类【二】加锁方式的影响因素【三】Mysql的死锁情况【1