【优选算法】优先级队列 {经验总结:优先级队列解决TopK问题,利用大小堆维护数据流中的中位数;相关编程题解析}

本文主要是介绍【优选算法】优先级队列 {经验总结:优先级队列解决TopK问题,利用大小堆维护数据流中的中位数;相关编程题解析},希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、经验总结

优先级队列(堆),常用于在集合中筛选最值或解决TopK问题。

提示:对于固定序列的TopK问题,最优解决方案是快速选择算法,时间复杂度为O(N)比堆算法O(NlogK)更优;而对于动态维护数据流中的TopK,最优解决方案是堆算法,每次添加数据后筛选,时间复杂度为O(logK)比快速选择算法O(N)更优;

优先级队列如何解决TopK问题?

  1. 创建一个大小为K的堆
  2. 循环
    1. 将数组中的元素依次进堆
    2. 判断堆中的元素个数是否大于K,如果大于K就pop弹出堆顶元素
  3. 将数组中的所有元素全部筛选一遍后,堆中剩余的K个元素就是最大(小)的K个元素

TopK问题选用大根堆还是小根堆?

  • 如果要选出最大的K个数,就选用小根堆;
  • 如果要选出最小的K个数,就选用大根堆;

利用大小堆维护数据流中的中位数

  1. 创建一个大堆left用于存储数据流的前一半(升序),一个小堆right用于存储后一半
  2. 控制left的元素个数m和right的元素个数n满足:m==n或m==n+1
  3. 数据流的中位数:当m==n时,mid=(left.top()+right.top())/2;当m==n+1时,mid=left.top();
  4. 新增元素:将新元素与left.top()(或right.top())比较,决定加入left还是right。完成插入后,记得调整两个堆的元素个数使其满足规则。

二、相关编程题

2.1 最后一块石头的重量

题目链接

1046. 最后一块石头的重量 - 力扣(LeetCode)

题目描述

在这里插入图片描述

算法原理

利用堆结构筛选最大值

编写代码

class Solution {
public:int lastStoneWeight(vector<int>& stones) {priority_queue<int> heap;for(auto e : stones) heap.push(e);while(heap.size() >= 2){int s1 = heap.top();heap.pop();int s2 = heap.top();heap.pop();if(s1 > s2) heap.push(s1-s2);}if(heap.size() == 0) return 0;else return heap.top();}
};

2.2 数据流中的第 K 大元素

题目链接

703. 数据流中的第 K 大元素 - 力扣(LeetCode)

题目描述

在这里插入图片描述

算法原理

在这里插入图片描述
这道题更适合使用堆解决,因为add函数插入一个数字后返回当前数据中的第K大的元素,如果使用快速选则算法,复杂度为O(N);而使用堆算法,复杂度为O(logK)

编写代码

class KthLargest {priority_queue<int, vector<int>, greater<int>> _heap;int _k;
public:KthLargest(int k, vector<int>& nums) {_k = k;for(auto e : nums) add(e);}int add(int val) {_heap.push(val);if(_heap.size() > _k)_heap.pop();return _heap.top();}
};

2.3 前K个高频单词

题目链接

692. 前K个高频单词 - 力扣(LeetCode)

题目描述

在这里插入图片描述

算法原理

在这里插入图片描述

编写代码

class Solution {typedef pair<string, int> PSI;struct Cmp{bool operator()(const PSI &left, const PSI &right){if(left.second != right.second) //出现频次不同,选出高频单词,按照小根堆的方式排列return left.second > right.second;elsereturn left.first < right.first; //出现频次相同,按字典序排序,按照大根堆的方式排列}};
public:vector<string> topKFrequent(vector<string>& words, int k) {unordered_map<string, int> hash;priority_queue<PSI, vector<PSI>, Cmp> heap;vector<string> ret(k);//统计所有单词的出现频次for(auto &str:words){++hash[str];} //用一个大小为k的堆筛选TopKfor(auto &psi:hash){heap.push(psi);if(heap.size() > k)heap.pop();}//将结果倒着放入数组for(int i = k-1; i >= 0; --i){ret[i] = heap.top().first;heap.pop();}return ret;}
};

2.4 数据流的中位数

题目链接

295. 数据流的中位数 - 力扣(LeetCode)

题目描述

在这里插入图片描述

算法原理

在这里插入图片描述

编写代码

class MedianFinder {priority_queue<int> left; //大根堆priority_queue<int, vector<int>, greater<int>> right; //小根堆
public:MedianFinder() {}void addNum(int num) {if(left.size() > right.size()) //m > n{int x = left.top();if(num <= x){left.push(num);left.pop();right.push(x);}else{right.push(num);}}else //m == n{int y = right.empty()? 0:right.top();if(right.empty() || num < y){left.push(num);}else{right.push(num);right.pop();left.push(y);}}}double findMedian() {if(left.size() > right.size()) //m > nreturn (double)left.top();else //m == nreturn (left.top()+right.top())/2.0;}
};

这篇关于【优选算法】优先级队列 {经验总结:优先级队列解决TopK问题,利用大小堆维护数据流中的中位数;相关编程题解析}的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1032775

相关文章

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比

Feign Client超时时间设置不生效的解决方法

《FeignClient超时时间设置不生效的解决方法》这篇文章主要为大家详细介绍了FeignClient超时时间设置不生效的原因与解决方法,具有一定的的参考价值,希望对大家有一定的帮助... 在使用Feign Client时,可以通过两种方式来设置超时时间:1.针对整个Feign Client设置超时时间

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

关于WebSocket协议状态码解析

《关于WebSocket协议状态码解析》:本文主要介绍关于WebSocket协议状态码的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录WebSocket协议状态码解析1. 引言2. WebSocket协议状态码概述3. WebSocket协议状态码详解3

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

CSS Padding 和 Margin 区别全解析

《CSSPadding和Margin区别全解析》CSS中的padding和margin是两个非常基础且重要的属性,它们用于控制元素周围的空白区域,本文将详细介绍padding和... 目录css Padding 和 Margin 全解析1. Padding: 内边距2. Margin: 外边距3. Padd

Oracle数据库常见字段类型大全以及超详细解析

《Oracle数据库常见字段类型大全以及超详细解析》在Oracle数据库中查询特定表的字段个数通常需要使用SQL语句来完成,:本文主要介绍Oracle数据库常见字段类型大全以及超详细解析,文中通过... 目录前言一、字符类型(Character)1、CHAR:定长字符数据类型2、VARCHAR2:变长字符数