matlab实现牛顿迭代法求解非线性方程组

2024-06-05 09:18

本文主要是介绍matlab实现牛顿迭代法求解非线性方程组,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

已知非线性方程组如下
3*x1-cos(x2*x3)-1/2=0

x1^2-81*(x2+0.1)^2+sin(x3)+1.06=0

exp(-x1*x2)+20*x3+(10*pi-3)/3=0

求解要求精度达到0.00001

---------------------------------------------------------分--割--线---------------------------------------------------------

首先建立函数fun

储存方程组编程如下将fun.m保存到工作路径中:

function f=fun(x);

%定义非线性方程组如下

%变量x1 x2 x3

%函数f1 f2 f3

syms x1 x2 x3

f1=3*x1-cos(x2*x3)-1/2;

f2=x1^2-81*(x2+0.1)^2+sin(x3)+1.06;

f3=exp(-x1*x2)+20*x3+(10*pi-3)/3;

f=[f1 f2 f3];

---------------------------------------------------------分--割--线---------------------------------------------------------

建立函数dfun

用来求方程组的雅克比矩阵将dfun.m保存到工作路径中:

function df=dfun(x);

%用来求解方程组的雅克比矩阵储存在dfun中

f=fun(x);

df=[diff(f,'x1');diff(f,'x2');diff(f,'x3')];

df=conj(df');

---------------------------------------------------------分--割--线---------------------------------------------------------

编程牛顿法求解非线性方程组将newton.m保存到工作路径中:

function x=newton(x0,eps,N);

con=0;

%其中x0为迭代初值eps为精度要求N为最大迭代步数con用来记录结果是否收敛

for i=1:N;

    f=subs(fun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)});

    df=subs(dfun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)});

    x=x0-f/df;

    for j=1:length(x0);

        il(i,j)=x(j);

    end

    if norm(x-x0)<eps

        con=1;

        break;

    end

    x0=x;

end

 

%以下是将迭代过程写入txt文档文件名为iteration.txt

fid=fopen('iteration.txt','w');

fprintf(fid,'iteration');

for j=1:length(x0)

    fprintf(fid,'         x%d',j);

end

for j=1:i

    fprintf(fid,'\n%6d     ',j);

    for k=1:length(x0)

        fprintf(fid,' %10.6f',il(j,k));

    end

end

if con==1

    fprintf(fid,'\n计算结果收敛!');

end

if con==0

    fprintf(fid,'\n迭代步数过多可能不收敛!');

end

fclose(fid);

---------------------------------------------------------分--割--线---------------------------------------------------------

运行程序

在matlab中输入以下内容

newton([0.1 0.1 -0.1],0.00001,20)

---------------------------------------------------------分--割--线---------------------------------------------------------

输出结果

ans =

 

    0.5000    0.0000   -0.5236

 

---------------------------------------------------------分--割--线---------------------------------------------------------

在iteration中查看迭代过程

 

iteration         x1         x2         x3

     1        0.490718   0.031238  -0.519661

     2        0.509011   0.003498  -0.521634

     3        0.500928   0.000756  -0.523391

     4        0.500227   0.000076  -0.523550

     5        0.500019   0.000018  -0.523594

     6        0.500005   0.000002  -0.523598

     7        0.500000   0.000000  -0.523599

计算结果收敛!

这篇关于matlab实现牛顿迭代法求解非线性方程组的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1032678

相关文章

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

C# foreach 循环中获取索引的实现方式

《C#foreach循环中获取索引的实现方式》:本文主要介绍C#foreach循环中获取索引的实现方式,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、手动维护索引变量二、LINQ Select + 元组解构三、扩展方法封装索引四、使用 for 循环替代

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构