用通俗语言讲解 vue3中Diff算法完全解析

本文主要是介绍用通俗语言讲解 vue3中Diff算法完全解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在Vue中 组件初次渲染时,会调用 render 函数生成初始的虚拟 DOM 树。
当组件的状态发生变化时,Vue 会重新调用 render 函数生成新的虚拟 DOM 树。
而Diff 算法是用来比较新旧虚拟 DOM 树的差异,并且只对差异部分进行更新的算法,从而尽量减少性能开销。

虚拟DOM树是什么?

描述组件视图结构的虚拟节点树,也就是VNode树
,它描述了一个 DOM 节点的信息,包括节点类型、属性、子节点等。
实现vNode

function createVNode(type?,props?,children?){const vnode = {type,props,children,}return vnode 
}

运用虚拟 DOM 可以将真实 DOM 的操作转换为JS对象的操作,避免了频繁的直接操作真实 DOM 带来的性能损耗。我们可以运用虚拟DOM的属性来进行操作,vnode 的 children 数组中对应子节点的 vnode 对象,所以在 vue 中通过 vnode 和真实的 DOM 树进行映射,我们也称之为虚拟树。

实现Diff算法

锁定需要改变的位置 处理前置和后置没有改变的元素

预处理前置节点

定义一个头指针

function patchkeyChildren(c1,c2){let i = 0;//c1为旧let e1 = c1.length - 1;let e2 = c2.length - 1;function isSomeVNodeType(n1, n2) {return n1.type === n2.type && n1.key JJJ=== n2.key
}while (i <= e1 && i <= e2) {const n1 = c1[i]const n2 = c2[i]if (isSomeVNodeType(n1, n2)) {patch(n1, n2,...)} else {break;}i++;}
}

预处理后置节点

function patchkeyChildren(c1,c2,...){
...
...
while(i <= e1 && i <= e2) {const n1 = c1[e1]const n2 = c2[e2]if (isSomeVNodeType(n1, n2)) {
patch(n1, n2,... )
} else {
break;
}
e1--;e2--;}
}

3.处理仅有新增节点情况 新节点比老节点多

function patchkeyChildren(c1,c2,...){
...
...
if (i > e1) {
if (i <= e2) {
while (i <= e2) {
patch(null, c2[i],...)
i++;
}
}
}

4.处理仅有卸载节点情况也就是老节点比新节点多

老节点 a b c
新节点 a b

function patchkeyChildren(c1,c2,...){
...
...
if(i > e2){if(i <= e1){while(i <= e1){unmount(c1[i].el)}}
}
}

⭐️⭐️⭐️5.处理其他情况(新增/卸载/移动)

创建新的 在老的里面不存在,在新的里面存在
删除老的 在老的里面存在,新的里面不存在
移动 节点存在于新的和老的节点,但是位置变了
实现删除功能

两种方法查找新节点到底存在于老节点 一种方法是遍历 ,另一种是Key,Key是节点的唯一标识 能提高效率 这也是Vue中为何总要写key属性
定义s1、s2变量 分别记录要处理部分的起始位置

...
else{
let s1 = i;//旧节点开始位置
let s2 = i;//新节点开始位置const keyToNewIndexMap = new Map()
//遍历新节点保存key映射表
for (let i = s2; i <= e2; i++) {const nextChild = c2[i]keyToNewIndexMap.set(nextChild.key, i)}
}
for(let i = s1; i <= e1; i++){const prevChild = c1[i]let newindex;if (prevChild.key != null) {newIndex = keyToNewIndexMap.get(prevChild.key)} else {for (let j = s2; j <= e2; j++) {if (isSomeVNodeType(prevChild, c2[j])) {newIndex = j;break;}}
}
//如果没有找到 则直接删除旧节点中元素
if (newIndex === undefined) {unMount(prevChild.el)}else{patch(prevChild, c2[newIndex], ...)
}
}

优化 中间部分老的比新的多 那么多出来的可以直接删掉

const toBePatched = e2 - s2 + 1;
let patched = 0;for (let i = s1; i <= e1; i++) {
...
if (patched >= toBePatched) {unMount(prevChild.el)continue;}//在patch后
...
patched++
移动实现

这里就需要借助最长递增子序列算法提高效率了 因为要移动位置 要频繁dom操作,效率很慢,可以筛选那些老节点和新节点都有递增有顺序的节点不动

//先建立映射关系
const newIndexToOldIndexMap = new Array(toBePatched)
for (let i = 0; i < toBePatched; i++) newIndexToOldIndexMap[i] = 0
...
...
//在patch前实现
newIndexToOldIndexMap[newIndex - s2] = i + 1; //不能把值设为0 他是有特殊意义的patch(prevChild, c2[newIndex], container, ...)const increasingNewIndexSequence =getSequence(newIndexToOldIndexMap)
//指针
let j = 0
for(let i =0;i < toBePatched; i++){if(i !==increasingNewIndexSequence[j]){console.log("移动位置")}else{j++}
}

优化 调用最长递增子序列也会浪费一定性能 当 可以定义一个变量moved 如果移动再开始
没有移动则为false

let moved = false;
let maxNewIndexSoFar = 0;
...
if (newIndex >= maxNewIndexSoFar) {maxNewIndexSoFar = newIndex} else {moved = true}
...
const increasingNewIndexSequence = moved ? getSequence(newIndexToOldIndexMap) : []
if(moved){console.log('插入操作')
}
创建新的节点
if (newIndexToOldIndexMap[i] === 0) {
patch(null, nextChild)
}
实现完成. 完整代码
function patchKeyedChildren(c1: any, c2: any, container, parentComponent, parentAnchor) {let i = 0let e1 = c1.length - 1;let e2 = c2.length - 1function isSomeVNodeType(n1, n2) {return n1.type === n2.type && n1.key === n2.key}// 左侧while (i <= e1 && i <= e2) {const n1 = c1[i]const n2 = c2[i]if (isSomeVNodeType(n1, n2)) {patch(n1, n2, container, parentComponent, parentAnchor)} else {break;}i++;}while (i <= e1 && i <= e2) {const n1 = c1[e1]const n2 = c2[e2]if (isSomeVNodeType(n1, n2)) {patch(n1, n2, container, parentComponent, parentAnchor)} else {break;}e1--;e2--;}if (i > e1) {if (i <= e2) {const nextPos = e2 + 1;const anchor = e2 + 1 < c2.length ? c2[nextPos].el : nullwhile (i <= e2) {patch(null, c2[i], container, parentComponent, anchor)i++;}}} else if (i > e2) {while (i <= e1) {
//删除操作
hostRemove(c1[i].el)i++}} else { // Array to Array 中间乱序let s1 = i;let s2 = i;const keyToNewIndexMap = new Map()for (let i = s2; i <= e2; i++) {const nextChild = c2[i]keyToNewIndexMap.set(nextChild.key, i)}const toBePatched = e2 - s2 + 1;let patched = 0;const newIndexToOldIndexMap = new Array(toBePatched)// 中间值发生改变再调用方法let moved = false;let maxNewIndexSoFar = 0for (let i = 0; i < toBePatched; i++) newIndexToOldIndexMap[i] = 0for (let i = s1; i <= e1; i++) {const prevChild = c1[i];if (patched >= toBePatched) {hostRemove(prevChild.el)continue;}let newIndex;if (prevChild.key != null) {newIndex = keyToNewIndexMap.get(prevChild.key)} else {for (let j = s2; j <= e2; j++) {if (isSomeVNodeType(prevChild, c2[j])) {newIndex = j;break;}}}if (newIndex === undefined) {hostRemove(prevChild.el)} else {if (newIndex >= maxNewIndexSoFar) {maxNewIndexSoFar = newIndex} else {moved = true}// 能代表新节点存在newIndexToOldIndexMap[newIndex - s2] = i + 1; //不能把值设为0 他是有特殊意义的patch(prevChild, c2[newIndex], container, parentComponent, null)patched++;}}const increasingNewIndexSequence = moved ? getSequence(newIndexToOldIndexMap) : []let j = increasingNewIndexSequence.length - 1;for (let i = toBePatched - 1; i >= 0; i--) {const nextIndex = i + s2;const nextChild = c2[nextIndex]const anchor = nextIndex + 1 < c2.length ? c2[nextIndex + 1].el : null;if (newIndexToOldIndexMap[i] === 0) {patch(null, nextChild, container, parentComponent, anchor)}if (moved) {if (j < 0 || i !== increasingNewIndexSequence[j]) {hostinsert(nextChild.el, container, anchor)} else {j--}}}}}
//递增子序列算法
function getSequence(arr: number[]): number[] {const p = arr.slice();const result = [0];let i, j, u, v, c;const len = arr.length;for (i = 0; i < len; i++) {const arrI = arr[i];if (arrI !== 0) {j = result[result.length - 1];if (arr[j] < arrI) {p[i] = j;result.push(i);continue;}u = 0;v = result.length - 1;while (u < v) {c = (u + v) >> 1;if (arr[result[c]] < arrI) {u = c + 1;} else {v = c;}}if (arrI < arr[result[u]]) {if (u > 0) {p[i] = result[u - 1];}result[u] = i;}}}u = result.length;v = result[u - 1];while (u-- > 0) {result[u] = v;v = p[v];}return result;}

这篇关于用通俗语言讲解 vue3中Diff算法完全解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1032646

相关文章

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

关于WebSocket协议状态码解析

《关于WebSocket协议状态码解析》:本文主要介绍关于WebSocket协议状态码的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录WebSocket协议状态码解析1. 引言2. WebSocket协议状态码概述3. WebSocket协议状态码详解3

CSS Padding 和 Margin 区别全解析

《CSSPadding和Margin区别全解析》CSS中的padding和margin是两个非常基础且重要的属性,它们用于控制元素周围的空白区域,本文将详细介绍padding和... 目录css Padding 和 Margin 全解析1. Padding: 内边距2. Margin: 外边距3. Padd

CSS will-change 属性示例详解

《CSSwill-change属性示例详解》will-change是一个CSS属性,用于告诉浏览器某个元素在未来可能会发生哪些变化,本文给大家介绍CSSwill-change属性详解,感... will-change 是一个 css 属性,用于告诉浏览器某个元素在未来可能会发生哪些变化。这可以帮助浏览器优化

CSS去除a标签的下划线的几种方法

《CSS去除a标签的下划线的几种方法》本文给大家分享在CSS中,去除a标签(超链接)的下划线的几种方法,本文给大家介绍的非常详细,感兴趣的朋友一起看看吧... 在 css 中,去除a标签(超链接)的下划线主要有以下几种方法:使用text-decoration属性通用选择器设置:使用a标签选择器,将tex

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

Oracle数据库常见字段类型大全以及超详细解析

《Oracle数据库常见字段类型大全以及超详细解析》在Oracle数据库中查询特定表的字段个数通常需要使用SQL语句来完成,:本文主要介绍Oracle数据库常见字段类型大全以及超详细解析,文中通过... 目录前言一、字符类型(Character)1、CHAR:定长字符数据类型2、VARCHAR2:变长字符数