一维时间序列突变检测方法(小波等,MATLAB R2021B)

2024-06-05 01:44

本文主要是介绍一维时间序列突变检测方法(小波等,MATLAB R2021B),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

信号的突变点检测问题是指在生产实践中,反映各种系统工作状态的信号,可能因为受到不同类型的噪声或外界干扰而发生了信号突变,导致严重失真的信号出现,因此必须探测突变出现的起点和终点。研究目的在于设计出检测方案,可以最快地检测出系统中信号非正常变化的时刻,作出后续处理,以减小损失。目前在国内,信号的突变点检测课题在滚动轴承、水利水电、智能空间行为识别等许多工程实践和科学研究领域已得到广泛研究。

自上世纪经典DSP方法提出并被逐渐成熟地应用以来,信号的突变点检测问题一直是一个较热的研究课题。对于信号突变点检测问题,目前已经提出了许多有效的经典DSP方法,例如经典的基于信号能量的检测法,然而其易于受噪声干扰且需要延迟一段时间以计算能量,因此发展了不少改进方法,比如基于累积和CUSUM的方式因具有良好的性能而得到广泛应用。CUSUM具有递归形式能够进行实时更新操作,计算效率比较高。虽然最初提出CUSUM来处理单个数据流,但是目前基于CUSUM的检测算法大多利用了来自多个传感器的信息。CUSUM通常需要信号突变前和突变后的统计信息作为检测的前提,在某些情形下,信号发生突变后的分布模型的统计信息是可以获得的,但在更一般场景中,由于突变原因多样且往往未知,变更后的模型发生了根本改变,突变后的统计信息是无法获得或预知的。又有科研人员提出了突变信息快速检测方法,快速检测方法旨在仅仅利用少量突变后的数据来进行训练,以得到信号突变后的模型,以此来最大程度地减少检测延迟。放眼许多应用场景,信号突变以后的分布模型可能来自一组潜在的可能模型,换句话说,变更后模型有多种假设。例如,检测风机轴承故障时,引起该故障的原因故障可能是外圈故障或内圈故障、滚子缺陷或和保存架故障等。在快速检测方法中,贝叶斯方法的效果比较好,本质上该方法就是提出了信号突变后的几种备选模型,然后通过算法来估计出最优的突变后的信号分布情况,进行进一步处理,从一定意义上放宽了很多场景中对突变后信号信息的依赖,但依然是治标不治本。

鉴于此,采用小波分析等方法对一维时间序列进行突变检测,运行环境为MATLAB R2021B。


function residue = cpnochange(x, statistic)
% compute total residual error in the absence of changes
n = size(x,2);
if n==0residue = NaN;
elseif strcmp(statistic,'mean')residue = n*sum(var(x,1,2));
elseif strcmp(statistic,'rms')residue = sum(n*log(sum(x.^2,2)/n));
elseif strcmp(statistic,'std')residue = sum(n*log(var(x,1,2)));
elseif strcmp(statistic,'linear')residue = sum(n*var(x,1,2) - sum((x-mean(x,2)).*((1:n)-mean(1:n)),2).^2 / (n*var(1:n,1)));
完整代码可通过知乎学术咨询获得:https://www.zhihu.com/consult/people/792359672131756032?isMe=1
end

图片

图片

图片

图片

图片

图片

图片

图片

工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

这篇关于一维时间序列突变检测方法(小波等,MATLAB R2021B)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1031723

相关文章

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

uva 10131 最长子序列

题意: 给大象的体重和智商,求体重按从大到小,智商从高到低的最长子序列,并输出路径。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vect

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景