【从零开始部署SAM(Segment Anything Model )大模型 3 Ubuntu20 离线部署 C++】

本文主要是介绍【从零开始部署SAM(Segment Anything Model )大模型 3 Ubuntu20 离线部署 C++】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这里是目录

  • 总览
  • 环境配置
  • 模型准备
    • Moble SAM onnx模型获取
    • Moble SAM pre onnx模型获取
  • 运行
    • cmakelist
  • 运行结果

总览

相比于使用python离线部署SAM大模型,C++要麻烦的多,本篇的部署过程主要基于项目:https://github.com/dinglufe/segment-anything-cpp-wrapper

环境配置

模型准备

通过C++进行部署的主要原因就是希望能够有效的提升运行效率减少推理耗时,SAM大模型的官方网站中提供了vit_h,vit_l,vit_b三种大小不同的模型参数,在我们的实际运行中发现,以vit_h参数为例,对于一帧图像的整体运算时间高达6000ms(读取图像+推理+获得掩膜并显示),因此我们认为SAM的三种参数都不适用于C++的部署工作,我们最终选择了MobileSAM作为C++的实际部署模型

在项目中需要处理模型mobilesam.onnx和预处理模型mobilesam_process.onnx
在当前以有项目和博客指导这两种模型应该如何获取,但是都太过于笼统对初学者并不友好,在当初运行时走了很多弯路,在此给出详细步骤过程

Moble SAM onnx模型获取

懒彦祖传送门:

https://download.csdn.net/download/qq_43649786/89380411
这部分在mobilesam的官方项目中给出了方法https://github.com/ChaoningZhang/MobileSAM#onnx-export
非常详细,需要注意的是需要安装onnx=1.12.0 && onnxruntime=1.13.1

  1. 创建conda环境并激活
conda create --name mobilesam python=3.8
conda activate mobilesam
  1. 下载源码并配置环境(在此默认已安装pytorch和torchvision)
pip install git+https://github.com/ChaoningZhang/MobileSAM.git
#如果不准备跑app.py下述可以不用
pip install gradio
#安装完后可能会出现打不开spyder的情况,运行以下指令
pip install Spyder
  1. 运行onnx生成文件
    注意此时系统的路径是在下载的源码内
python scripts/export_onnx_model.py --checkpoint ./weights/mobile_sam.pt --model-type vit_t --output ./mobile_sam.onnx

这么详细还搞不定我就真没办法了,彦祖

Moble SAM pre onnx模型获取

懒彦祖传送门:
https://download.csdn.net/download/qq_43649786/89380451

预训练的部分在部署项目中给出了代码
https://github.com/dinglufe/segment-anything-cpp-wrapper/blob/main/export_pre_model.py
但是同样有一些需要注意的点,首先在头文件的引用中需要将import segment_anything as SAM更改为import mobile_sam as SAM
需要注意的是如果没有在conda环境中配置mobileSAM环境和会出现问题,同时将SAM和mobileSAM同时安装在一个conda环境也有可能报错,在此建议分别安装

# import segment_anything as SAM
import mobile_sam as SAM

此处还需要一个mobileSAM 的.pt模型文件,在官方的项目中可自行下载:
https://github.com/ChaoningZhang/MobileSAM#onnx-export

完整代码

import torch
import numpy as np
import osfrom segment_anything.utils.transforms import ResizeLongestSidefrom onnxruntime.quantization import QuantType
from onnxruntime.quantization.quantize import quantize_dynamicoutput_names = ['output']# Gener
# Mobile-SAM
# # Download Mobile-SAM model "mobile_sam.pt" from https://github.com/ChaoningZhang/MobileSAM/blob/master/weights/mobile_sam.pt
import mobile_sam as SAM
checkpoint = 'mobile_sam.pt'
model_type = 'vit_t'
output_path = 'models/mobile_sam_preprocess.onnx'
quantize = False# Target image size is 1024x720
image_size = (1024, 720)output_raw_path = output_path
if quantize:# The raw directory can be deleted after the quantization is doneoutput_name = os.path.basename(output_path).split('.')[0]output_raw_path = '{}/{}_raw/{}.onnx'.format(os.path.dirname(output_path), output_name, output_name)
os.makedirs(os.path.dirname(output_raw_path), exist_ok=True)sam = SAM.sam_model_registry[model_type](checkpoint=checkpoint)
sam.to(device='cpu')
transform = ResizeLongestSide(sam.image_encoder.img_size)image = np.zeros((image_size[1], image_size[0], 3), dtype=np.uint8)
input_image = transform.apply_image(image)
input_image_torch = torch.as_tensor(input_image, device='cpu')
input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]class Model(torch.nn.Module):def __init__(self, image_size, checkpoint, model_type):super().__init__()self.sam = SAM.sam_model_registry[model_type](checkpoint=checkpoint)self.sam.to(device='cpu')self.predictor = SAM.SamPredictor(self.sam)self.image_size = image_sizedef forward(self, x):self.predictor.set_torch_image(x, (self.image_size))if 'interm_embeddings' not in output_names:return self.predictor.get_image_embedding()else:return self.predictor.get_image_embedding(), torch.stack(self.predictor.interm_features, dim=0)model = Model(image_size, checkpoint, model_type)
model_trace = torch.jit.trace(model, input_image_torch)
torch.onnx.export(model_trace, input_image_torch, output_raw_path,input_names=['input'], output_names=output_names)if quantize:quantize_dynamic(model_input=output_raw_path,model_output=output_path,per_channel=False,reduce_range=False,weight_type=QuantType.QUInt8,)

运行

cmakelist

cmake_minimum_required(VERSION 3.21)
set(CMAKE_CXX_STANDARD 17)project(SamCPP)find_package(OpenCV CONFIG REQUIRED)
find_package(gflags CONFIG REQUIRED)set(ONNXRUNTIME_ROOT_DIR /home/ubuntu/onnxruntime-linux-x64-gpu-1.14.1)add_library(sam_cpp_lib SHARED sam.h sam.cpp click_sample.cpp)
set(onnxruntime_lib ${ONNXRUNTIME_ROOT_DIR}/lib/libonnxruntime.so)
target_include_directories(sam_cpp_lib PRIVATE ${ONNXRUNTIME_ROOT_DIR}/include)
target_link_libraries(sam_cpp_lib PRIVATE${onnxruntime_lib}${OpenCV_LIBS}
)add_executable(sam_cpp_test test.cpp)
target_link_libraries(sam_cpp_test PRIVATEsam_cpp_lib${OpenCV_LIBS}gflags
)

缺啥安啥

更改test.cpp中的路径:

DEFINE_string(pre_model, "models/mobile_sam_preprocess.onnx", "Path to the preprocessing model");
DEFINE_string(sam_model, "models/mobile_sam.onnx", "Path to the sam model");
DEFINE_string(image, "images/input.jpg", "Path to the image to segment");
DEFINE_string(pre_device, "cpu", "cpu or cuda:0(1,2,3...)");
DEFINE_string(sam_device, "cpu", "cpu or cuda:0(1,2,3...)");

确保以上路径都正确且可以访问到文件
在项目主文件夹内打开终端

编译

mkdir build
cd build
cmake ..
make -j2
cd ..
./build/sam_cpp_test

运行结果

在这里插入图片描述
在这里插入图片描述

都看到这了,点个赞再走吧彦祖

这篇关于【从零开始部署SAM(Segment Anything Model )大模型 3 Ubuntu20 离线部署 C++】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1031163

相关文章

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

详解C++中类的大小决定因数

《详解C++中类的大小决定因数》类的大小受多个因素影响,主要包括成员变量、对齐方式、继承关系、虚函数表等,下面就来介绍一下,具有一定的参考价值,感兴趣的可以了解一下... 目录1. 非静态数据成员示例:2. 数据对齐(Padding)示例:3. 虚函数(vtable 指针)示例:4. 继承普通继承虚继承5.

C++中std::distance使用方法示例

《C++中std::distance使用方法示例》std::distance是C++标准库中的一个函数,用于计算两个迭代器之间的距离,本文主要介绍了C++中std::distance使用方法示例,具... 目录语法使用方式解释示例输出:其他说明:总结std::distance&n编程bsp;是 C++ 标准

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

SpringBoot配置Ollama实现本地部署DeepSeek

《SpringBoot配置Ollama实现本地部署DeepSeek》本文主要介绍了在本地环境中使用Ollama配置DeepSeek模型,并在IntelliJIDEA中创建一个Sprin... 目录前言详细步骤一、本地配置DeepSeek二、SpringBoot项目调用本地DeepSeek前言随着人工智能技

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

GORM中Model和Table的区别及使用

《GORM中Model和Table的区别及使用》Model和Table是两种与数据库表交互的核心方法,但它们的用途和行为存在著差异,本文主要介绍了GORM中Model和Table的区别及使用,具有一... 目录1. Model 的作用与特点1.1 核心用途1.2 行为特点1.3 示例China编程代码2. Tab

C++ 中的 if-constexpr语法和作用

《C++中的if-constexpr语法和作用》if-constexpr语法是C++17引入的新语法特性,也被称为常量if表达式或静态if(staticif),:本文主要介绍C++中的if-c... 目录1 if-constexpr 语法1.1 基本语法1.2 扩展说明1.2.1 条件表达式1.2.2 fa

通过Docker Compose部署MySQL的详细教程

《通过DockerCompose部署MySQL的详细教程》DockerCompose作为Docker官方的容器编排工具,为MySQL数据库部署带来了显著优势,下面小编就来为大家详细介绍一... 目录一、docker Compose 部署 mysql 的优势二、环境准备与基础配置2.1 项目目录结构2.2 基