Python数据分析案例46——电力系统异常值监测(自编码器,孤立森林,SVMD)

本文主要是介绍Python数据分析案例46——电力系统异常值监测(自编码器,孤立森林,SVMD),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

案例背景

多变量的时间序列的异常值监测一直是方兴未艾的话题,我总能看到不少的同学要做什么时间序列预测,然后做异常值监测,但是很多同学都搞不清楚他们的区别。

这里要简单解释一下,时间序列预测是有监督的模型,而异常值监测在没有明确给出是不是异常值这个标签y的时候,通常都是无监督模型。通过数据的自身的规律来判断哪些是不是异常点。

本次用一组电力用电量的数据,某个用户的用电量的数据进行异常值监测的代码演示,数据量有点大,一个用户就有10w条,跑得太慢所以没有用很多模型,只用了(自编码器,孤立森林,SVMD)三个模型。

具体的数据文件csv,打开长这个样子:

第一列是时间,u是电压,i是电流,p是功率。言简意赅,简单明了。

我们要做的就是用模型算法去寻找哪些时刻是异常点。

需要该案例的全部代码和数据集可以参考:异常值监测


代码实现

读取数据

先导入包,由于要用深度学习,包有点多

import os
import pandas as pd
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt 
import seaborn as snsplt.rcParams ['font.sans-serif'] ='SimHei'               #显示中文
plt.rcParams ['axes.unicode_minus']=False               #显示负号#from pandas.plotting import scatter_matrix
import pickle
import h5py
from scipy import statsfrom sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import tensorflow as tf
from tensorflow.keras.models import Model, load_model
from tensorflow.keras.layers import Input, Dense
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping
from tensorflow.keras import regularizers
from tensorflow.keras.utils import plot_model
%matplotlib inline
#sns.set(style='whitegrid', palette='muted', font_scale=1.5)from sklearn.model_selection import train_test_split
from sklearn.svm import OneClassSVM
from sklearn.neural_network import MLPRegressor
from sklearn.ensemble import IsolationForest
from sklearn.metrics import accuracy_score
from sklearn.mixture import GaussianMixture

 从下面读取的文件名称就知道,这是编号60680306的用户在2022年1月到4月26日的用电量情况的数据。

data1=pd.read_csv('60680306_202201-20220426.csv',parse_dates=['time']).set_index('time')
data1.head()

把P功率单独拿出来画一下

data1['P'].plot(figsize=(20,3))

数据挺密集的,也具有明显的周期性。


异常值监测

下面开始用不同的模型进行异常值监测

先进行数据的标准化

#数据标准化
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(data1)
X_s = scaler.transform(data1)
X_trainNorm=X_s

自编码器

自编码器就是神经网络进行重构后还原,我这里就用mlp层。

就是无监督模型,X是自己,y也是自己,重构后计算误差,误差大了就是异常值。

input_dim = X_trainNorm.shape[1]
layer1_dim = 64
encoder_dim = 32input_layer = Input(shape=(input_dim, ))
encoder1 = Dense(layer1_dim, activation="relu")(input_layer)
encoder2 = Dense(encoder_dim, activation="relu")(encoder1)
decoder1 = Dense(layer1_dim, activation='relu')(encoder2)
decoder2 = Dense(input_dim, activation='linear')(decoder1)
print('input_layer: ',input_layer)
print('encoder1',encoder1)
print('encoder2',encoder2)
print('decoder1',decoder1)
print('decoder2',decoder2)

打印查看模型信息 

autoencoder = Model(inputs=input_layer, outputs=decoder2)
autoencoder.summary()

训练 

nb_epoch = 10
batch_size = 128
autoencoder.compile(optimizer='adam', loss='mean_squared_error')
#checkpointer = ModelCheckpoint(filepath="model.h5",verbose=0,save_best_only=True)
#earlystopping = EarlyStopping(monitor='val_loss', patience=5, verbose=0) # 'patience' number of not improving epochshistory = autoencoder.fit(X_trainNorm, X_trainNorm,epochs=nb_epoch, batch_size=batch_size,shuffle=True,verbose=1).history

查看损失变化

plt.plot(history['loss'])
#plt.plot(history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper right');

基本2轮就收敛了。

用解码器进行预测

testPredictions = autoencoder.predict(X_trainNorm)
X_trainNorm.shape,testPredictions.shape

可以看到数据还原回来了

我们取出P这一列,然后计算误差

testMSE = mean_squared_error(X_trainNorm.transpose(), testPredictions.transpose(), multioutput='raw_values')
error_df = pd.DataFrame({'reconstruction_error': testMSE,'true_value': data1['P']})
print(error_df.shape)
error_df.head()

画个直方图看看:

error_df['reconstruction_error'].plot.hist()

可以看到误差基本都是0附近,但是存一些极大值,

我们用97.5%作为分位点,以此作为是不是异常值的阈值判断

threshold = error_df.reconstruction_error.quantile(q=0.975)
threshold

大于这个阈值就是异常值,小于就是正常值。查看计算出来的异常值和正常值的数量

mlp_label=np.where( error_df.reconstruction_error.to_numpy()>threshold,1,0)
error_df['pred_class']=mlp_label
error_df['pred_class'].value_counts()

异常值2.6k,正常值1w,差不多是这个比例。

画个图直观看看

groups = error_df.groupby('pred_class')
fig, ax = plt.subplots(figsize=(10,3),dpi=128)
for name, group in groups:if name == 1:MarkerSize = 3 ; Color = 'orangered' ; Label = 'Fraud' ; Marker = 'd'else:MarkerSize = 3 ; Color = 'b' ; Label = 'Normal' ; Marker = 'o'ax.plot(group.index, group.reconstruction_error, linestyle='',color=Color,label=Label,ms=MarkerSize,marker=Marker)ax.hlines(threshold, ax.get_xlim()[0], ax.get_xlim()[1], colors="r", zorder=100, label='Threshold')
ax.legend(loc='upper left', bbox_to_anchor=(0.95, 1))
plt.title("Probabilities of fraud for different classes")
plt.ylabel("Reconstruction error")  ;   plt.xlabel("Data point index")
plt.show()

上面红色的,误差大的,就是异常值。

然后把这些异常点画在功率曲线上面

def plot_Abnormal(error_df,mode='Autoencoder'):plt.figure(figsize=(14, 4),dpi=128)plt.plot(error_df.index, error_df["true_value"], label='Power')# Plotting the pred_class scatter plot for points where pred_class is 1pred_class_1 = error_df[error_df["pred_class"] == 1]plt.scatter(pred_class_1.index, pred_class_1["true_value"], color='orange', label='Abnormal value')# Adding labels and legendplt.xlabel('Time')plt.ylabel('Power')plt.title(mode)plt.legend()plt.grid(True)plt.show()
plot_Abnormal(error_df,mode='Autoencoder')

 可以看到很多极大的点,或者是下面一些极小的点,都被判断为异常值。

计算一下误差指标MSE,MAE,方便等下模型对比。

def calculate_mse_mae(df):true_mean = df[df["pred_class"] == 0]["true_value"].mean()pred_class_1 = df[df["pred_class"] == 1]["true_value"]if pred_class_1.empty:mse = np.nanmae = np.nanelse:mse = np.mean((pred_class_1 - true_mean) ** 2)mae = np.mean(np.abs(pred_class_1 - true_mean))return mse, mae# Calculate MSE and MAE for the given DataFrame
df_eval_all=pd.DataFrame(columns=['MSE','MAE'])
df_eval_all.loc['Autoencoder',:]=calculate_mse_mae(error_df)


支持数据描述

支持数据描述,Support Vector Data Description,SVMD,就是支持向量机的无监督版:

直接用sklearn就行

svmd = OneClassSVM(nu=0.025, kernel="rbf", gamma=0.1)
# Fit the SVM model only on normal data (X_normal)
svmd.fit(X_trainNorm)  # Ensure to use scaled normal data
y_pred = svmd.predict(X_trainNorm)
print(y_pred.shape)
pd.Series(y_pred).value_counts()

差不多也是这个比例

画图查看

error_df = pd.DataFrame({'true_value': data1['P']})
error_df['pred_class']=pd.Series(y_pred).map({1:0,-1:1}).to_numpy()
plot_Abnormal(error_df,mode='SVMD')

 可以看到 和自编码器一样,很多极大的点,或者是下面一些极小的点,都被判断为异常值。

计算误差指标

df_eval_all.loc['SVMD',:]=calculate_mse_mae(error_df)


孤立深林

孤立深林 Isolation Forest,也是机器学习模型的无监督版

进行异常值监测

iso_forest = IsolationForest(contamination=0.025)
iso_forest.fit(X_trainNorm)  #X_normal_scaled
y_pred_iso = iso_forest.predict(X_trainNorm)
pd.Series(y_pred_iso).value_counts()

异常值和正常值差不多也是这个比例

画图

error_df = pd.DataFrame({'true_value': data1['P']})
error_df['pred_class']=pd.Series(y_pred_iso).map({1:0,-1:1}).to_numpy()
plot_Abnormal(error_df,mode='IF')

  可以看到 和前面方法一样,很多极大的点,都被判断为异常值。

但是孤立森林明显下面极小的点没有太多异常值。

计算误差指标

df_eval_all.loc['IF',:]=calculate_mse_mae(error_df)


评价指标对比

df_eval_all

可视化

bar_width = 0.4
colors=['tomato','springgreen','skyblue','gold']
fig, ax = plt.subplots(1,2,figsize=(6,3))
for i,col in enumerate(df_eval_all.columns):n=int(str('12')+str(i+1))plt.subplot(n)df_col=df_eval_all[col]m =np.arange(len(df_col))#hatch=['-','/','+','x'],plt.bar(x=m,height=df_col.to_numpy(),width=bar_width,color=colors)#plt.xlabel('Methods',fontsize=12)names=df_col.indexplt.xticks(range(0, 3),names,fontsize=11)plt.ylabel(col,fontsize=11)
plt.tight_layout()
#plt.savefig('柱状图.jpg',dpi=512)
plt.show()

可以看到,自编码器效果好于SVMD好于孤立森林。

因为数据量大,深度学习的方法还是好一些。

本次就演示了3中异常值监测的方法,时间序列都可以套用,更多的异常值监测的模型可以参考我之前的文章。
 


创作不易,看官觉得写得还不错的话点个关注和赞吧,本人会持续更新python数据分析领域的代码文章~(需要定制类似的代码可私信)

这篇关于Python数据分析案例46——电力系统异常值监测(自编码器,孤立森林,SVMD)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1031138

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2