svmd专题

Python数据分析案例46——电力系统异常值监测(自编码器,孤立森林,SVMD)

案例背景 多变量的时间序列的异常值监测一直是方兴未艾的话题,我总能看到不少的同学要做什么时间序列预测,然后做异常值监测,但是很多同学都搞不清楚他们的区别。 这里要简单解释一下,时间序列预测是有监督的模型,而异常值监测在没有明确给出是不是异常值这个标签y的时候,通常都是无监督模型。通过数据的自身的规律来判断哪些是不是异常点。 本次用一组电力用电量的数据,某个用户的用电量的数据进行异常值监测的代

【MATLAB】SVMD_LSTM神经网络时序预测算法

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~ 1 基本定义 SVMD-LSTM神经网络时序预测算法是一种结合了单变量经验模态分解(Singular Value Decomposition,SVD)和长短期记忆神经网络(LSTM)的时间序列预测方法。 SVD是一种矩阵分解方法,可以将一个矩阵分解为三个部分:左奇异向量矩阵、奇异值矩阵和右奇异向量矩阵。在时间序列分析中,

逐次变分模态分解(Sequential Variational Mode Decomposition,SVMD)(附代码)

代码原理 逐次变分模态分解(Sequential Variational Mode Decomposition,SVMD)是一种用于信号处理和数据分析的方法。它可以将复杂的信号分解为一系列模态函数,每个模态函数代表了信号中的一个特定频率成分。SVMD的主要目标是提取信号中的不同频率成分,并将其重构为原始信号。 SVMD的基本原理是通过变分模态分解的方式将信号分解为多个模态函数。在每个迭代步骤中