DeepDriving | 基于YOLOv8分割模型实现垃圾识别

2024-06-04 20:28

本文主要是介绍DeepDriving | 基于YOLOv8分割模型实现垃圾识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文来源公众号“DeepDriving”,仅用于学术分享,侵权删,干货满满。

原文链接:基于YOLOv8分割模型实现垃圾识别

0. 引言

YOLOv8Ultralytics开源的一个非常火的AI算法,目前支持目标检测、实例分割、姿态估计等任务。如果对YOLOv8的安装和使用还不了解的可以参考我之前写的这篇文章:

YOLOv8初体验:检测、跟踪、模型部署

本文将介绍如何使用YOLOv8的分割模型实现垃圾识别,其中所使用的训练数据来自TACO垃圾数据集。

1. 数据集介绍

TACO是一个包含在不同环境下(室内、树林、道路和海滩)拍摄的垃圾图像数据集,这些图像中的垃圾对象被精细地用方框和多边形进行了标注,标注信息采用与COCO数据集一样的格式,总共有60个类别,不过有的类别标注得很少甚至没有。下图是TACO数据集中的一些标注示例:

如果需要下载数据集,先执行下面的命令拉取官方的GitHub仓库:

git clone https://github.com/pedropro/TACO.git

然后用Python运行脚本即可下载数据集:

python3 download.py

如果下载过程中被中断了,只需重新执行download脚本即可继续下载。

2. 训练模型

2.1 转换标注格式

TACO数据集原始的标注信息被保存在一个名为annotations.json的文件中,在使用该数据集训练YOLOv8分割模型前,需要先把原始的标注信息转换为YOLOv8要求的格式。YOLOv8分割模型训练时需要的标注格式如下:

<id> <x_1> <y_1> ... <x_n> <y_n>

一个对象的标注信息放在一行,首先是该对象类别的id(从0开始算),接着将多边形各点像素坐标的xy值依次排列,其中xy的值需要分别除以图像的宽度和高度进行归一化,一幅图像的所有标注信息放在一个与图像同名的txt文件中。

进行格式转换后,txt文件中的内容类似于这样:

5 0.5183 0.4892 0.5480 0.4840 0.4840 0.5627 0.4840 0.5724 0.4853 0.5822 0.4879 0.5900
7 0.6227 0.5211 0.6232 0.5250 0.5074 0.6154 0.5081 0.6183 0.5107 0.5068 0.6120 0.6290

用于格式转换的关键Python代码如下:

img = cv2.imread(image_path)
height, width, _ = img.shapelabel_writer = open(label_path, "w")
for annotation in annotations:category_id = annotation["category_id"]seg_labels = []for segmentation in annotation["segmentation"]:points = np.array(segmentation).reshape((int(len(segmentation) / 2), 2))for point in points:x = point[0] / widthy = point[1] / heightseg_labels.append(x)seg_labels.append(y)label_writer.write(str(category_id) + " " + " ".join([str(a) for a in seg_labels]) + "\n")
label_writer.close()
2.2 创建配置文件

首先仿照ultralytics/cfg/datasets/coco128-seg.yaml创建一个TACO数据集的配置文件taco-seg.yaml,文件内容如下:

path: /home/test/TACO/data  #数据集所在的目录
train: train.txt  # 训练集路径,相对于path目录
val: val.txt  # 验证集路径,相对于path目录
test:  test.txt # 测试集路径,相对于path目录,可以不写# 类别id和名称
names:0: Aluminium foil1: Battery2: Aluminium blister pack3: Carded blister pack4: Other plastic bottle5: Clear plastic bottle6: Glass bottle7: Plastic bottle cap8: Metal bottle cap9: Broken glass10: Food Can...

数据集的设置的方式有几种形式,我的方式是建立imageslabels两个目录,分别用于存放图像和txt标注文件,然后把数据集按照8:1:1的比例划分训练集、验证集、测试集,再把三个数据集图片的绝对路径分别写入train.txtval.txttest.txt三个文件中。所以上面的taco-seg.yaml文件中设置的路径path就是train.txtval.txttest.txt这三个文件所在的目录,这三个文件中包含的是对应数据集中图片的绝对路径,类似于这样:

/home/test/TACO/data/images/batch_13/000077.jpg
/home/test/TACO/data/images/batch_11/000032.jpg
/home/test/TACO/data/images/batch_15/000073.jpg

配置好数据集后,还要设置模型参数。首先将ultralytics/cfg/models/v8/yolov8-seg.yaml文件拷贝一份,命名为yolov8-seg-taco.yaml,然后把文件中的类别数量nc80改为TACO数据集的60

...
# Parameters
nc: 60  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-seg.yaml' will call yolov8-seg.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]s: [0.33, 0.50, 1024]m: [0.67, 0.75, 768]l: [1.00, 1.00, 512]x: [1.00, 1.25, 512]...

其他有关模型结构的参数如果没有必要就不需要修改了。

2.3 训练

训练YOLOv8可以使用命令行也可以编写Python代码实现,个人觉得还是使用命令行比较方便,所以本文采用命令行的方式进行训练,调用的命令如下:

yolo task=segment mode=train data=taco-seg.yaml model=yolov8n-seg-taco.yaml epochs=100 batch=16 imgsz=640 device=0 name=taco-seg

这里data参数用于指定数据集配置文件,model参数用于指定模型配置文件,如果不知道有哪些参数可以参考ultralytics/cfg/default.yaml文件,这个文件里面包含所有需要的参数。需要注意的是,我这里指定的模型配置文件名为yolov8n-seg-taco.yaml,但是前面我创建的文件名为yolov8-seg-taco.yaml,这是为什么呢?因为我这里想使用的模型是yolov8n。假如我想使用yolov8x模型,那么训练的时候设置参数model=yolov8x-seg-taco.yaml就可以了。

训练的结果保存在runs/segment/taco-seg目录下,其中权重保存在该目录下的weights文件夹中。

3. 结果

训练完成后,我们可以调用命令测试一下模型的效果:

yolo task=segment mode=predict model=runs/segment/taco-seg/weights/best.pt source=/home/test/TACO/data/images/batch_9/000096.jpg show=True

下面是我在测试集的两张图片上测试的结果:

THE END !

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

这篇关于DeepDriving | 基于YOLOv8分割模型实现垃圾识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1031039

相关文章

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

JS+HTML实现在线图片水印添加工具

《JS+HTML实现在线图片水印添加工具》在社交媒体和内容创作日益频繁的今天,如何保护原创内容、展示品牌身份成了一个不得不面对的问题,本文将实现一个完全基于HTML+CSS构建的现代化图片水印在线工具... 目录概述功能亮点使用方法技术解析延伸思考运行效果项目源码下载总结概述在社交媒体和内容创作日益频繁的

Python如何将大TXT文件分割成4KB小文件

《Python如何将大TXT文件分割成4KB小文件》处理大文本文件是程序员经常遇到的挑战,特别是当我们需要把一个几百MB甚至几个GB的TXT文件分割成小块时,下面我们来聊聊如何用Python自动完成这... 目录为什么需要分割TXT文件基础版:按行分割进阶版:精确控制文件大小完美解决方案:支持UTF-8编码

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

通过Spring层面进行事务回滚的实现

《通过Spring层面进行事务回滚的实现》本文主要介绍了通过Spring层面进行事务回滚的实现,包括声明式事务和编程式事务,具有一定的参考价值,感兴趣的可以了解一下... 目录声明式事务回滚:1. 基础注解配置2. 指定回滚异常类型3. ​不回滚特殊场景编程式事务回滚:1. ​使用 TransactionT

Android实现打开本地pdf文件的两种方式

《Android实现打开本地pdf文件的两种方式》在现代应用中,PDF格式因其跨平台、稳定性好、展示内容一致等特点,在Android平台上,如何高效地打开本地PDF文件,不仅关系到用户体验,也直接影响... 目录一、项目概述二、相关知识2.1 PDF文件基本概述2.2 android 文件访问与存储权限2.

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入