Elastic Connectors:增量同步对性能的影响

2024-06-04 16:52

本文主要是介绍Elastic Connectors:增量同步对性能的影响,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:Artem Shelkovnikov

Elastic 连接器是一种 Elastic 集成,可将数据从原始数据源同步到 Elasticsearch 索引。连接器使你能够创建可搜索的只读数据源副本。

有许多连接器支持各种第三方,例如:

  • MongoDB
  • 各种 SQL DBMS,例如 MySQL、PostgreSQL、MSSQL 和 OracleDB
  • Sharepoint Online
  • Amazon S3
  • 还有更多。完整列表可在此处查看。

连接器支持两种类型的内容同步作业:完全同步和增量同步。

完全同步

完全同步是从第三方服务中提取所有所需文档并将其导入 Elasticsearch 的同步。因此,如果你已将网络驱动器连接器设置为从文件夹 “\Documents/Reports\2022**.docx” 导入所有文档,则在完全同步期间,连接器将获取符合此条件的所有文档并将其全部发送到 Elasticsearch。简化的伪代码如下所示:

connector = NetworkDriveConnector(host="192.168.0.105",path="\\Documents\Reports\2025\**.doc"
)for incoming_document_metadata in connector.extract_documents():content = connector.download(incoming_document_metadata)document = {"id": incoming_document_metadata["id"]"content": content}elasticsearch.ingest(document)

这种方法效果很好,直到同步开始耗时过长。这可能是因为连接器获取了比所需更多的数据。例如,为什么要获取未更改的旧文件并将其发送到 Elasticsearch?有人可能会说文件的元数据可能不可靠,因此需要再次获取所有文件并将其发送到 Elasticsearch。确实,情况可能如此,但如果我们可以信任从第三方获取的数据的元数据,我们就可以提取更少的数据。增量同步是实现此目的的方法。

增量同步

大多数情况下,如果编写得当,连接器会花大量时间执行 IO 操作。回到示例代码,有 3 个地方会发生 IO:

connector = NetworkDriveConnector(host="192.168.0.105",path="\\Documents\Reports\2025\**.doc"
)# Place #1: reading document metadata from 3rd-party system
for incoming_document_metadata in connector.extract_documents():# Place #2: reading document content from 3rd-party systemcontent = connector.download(incoming_document_metadata)document = {"id": incoming_document_metadata["id"]"content": content}# Place #3: ingesting the resulting document into Elasticsearchelasticsearch.ingest(document)

这些地方都可能成为瓶颈,并在同步过程中耗费大量时间。

这就是增量同步发挥作用的地方。其目的是尽可能减少任何阶段的 IO 量。

潜在的优化

从第三方系统获取更少的文档

修改上面的示例,代码可能如下所示:

connector = NetworkDriveConnector(host="192.168.0.105",path="\\Documents\Reports\2025\**.doc"
)# We can store last sync time somewhere
last_sync_time = connector.fetch_last_sync_time()# And later use it querying Network Drive
for incoming_document_metadata in connector.extract_documents(from=last_sync_time):content = connector.download(incoming_document_metadata)document = {"id": incoming_document_metadata["id"]"content": content}elasticsearch.ingest(document)

如果我们的第三方系统中只有少量文档发生变化,我们可以显著加快提取过程。但是,对于网络驱动器(netword drive)来说,这是不可能的 - 它的 API 不支持通过元数据过滤文档。我们将无法避免扫描网络驱动器的全部内容。

跳过下载自上次同步以来未发生更改的文件内容

在同步过程中,下载文件内容需要花费大量时间。如果文件相当大、连接不稳定或吞吐量较低,则在同步第三方内容时,下载文件内容将花费大部分时间。如果我们跳过下载其中一些文件,这已经可以显著加快连接器的速度。

考虑以下示例伪代码:

connector = NetworkDriveConnector(host="192.168.0.105",path="\\Documents\Reports\2025\**.doc"
)last_sync_time = connector.fetch_last_sync_time()for incoming_document_metadata in connector.extract_documents():# If document timestamp did not change then not fetching# document content can save us a lot of timeif incoming_document_metadata["last_updated_at"] > last_sync_timecontent = connector.download(incoming_document_metadata)document = {"id": incoming_document_metadata["id"]"content": content}elasticsearch.ingest(document)

如果没有更新文档,同步速度实际上会比完全同步内容快几个数量级。

跳过将未修改的文档提取到 Elasticsearch 的过程

虽然这看起来微不足道,但将数据提取到 Elasticsearch 需要花费大量时间 - 尽管通常比从第三方系统下载内容的时间要短。我们可以开始存储每个文档的时间戳,如果时间戳没有改变,则不将文档发送到 Elasticsearch。

我们可以将此方法与之前的方法结合起来,以在同步期间节省尽可能多的时间。

connector = NetworkDriveConnector(host="192.168.0.105",path="\\Documents\Reports\2025\**.doc"
)# We need to fetch only IDs and timestamps as it's sufficient to make a decision.
# For large indices it can still take a good amount of RAM, but that's the price.
existing_documents = connector.fetch_existing_documents(fields=["id", "_timestamp"])for incoming_document_metadata in connector.extract_documents():existing_document_metadata = existing_documents[document_metadata["id"]]# If a document for this 3rd-party record exists in Elasticsearch index# and timestamp did not change, then skip downloading its content# and skip ingesting the documentif existing_document_metadata:incoming_document_timestamp = incoming_document_metadata["last_updated_at"]existing_document_timestamp = existing_document_metadata["_timestamp"]if incoming_document_timestamp == existing_document_timestamp:# Skip the document for goodcontinue;content = connector.download(incoming_document_metadata)document = {"id": incoming_document_metadata["id"]"content": content,"_timestamp" = incoming_document_metadata["last_updated_at"]}elasticsearch.ingest(document)

这种方法有助于在运行同步时节省更多时间。现在让我们看看此类改进的性能考虑因素。

增量同步性能

现在,既然我们已经研究了简化的代码,了解了增量同步的工作原理,我们可以尝试估计潜在的性能改进。

对于某些连接器,增量同步以某种方式实现,以优化从第三方获取数据的方式。例如,Sharepoint Online 连接器通过增量 API 获取一些数据 - 仅收集上次同步后更改的文档。这以明显的方式提高了性能 - 更少的数据 -> 更少的时间将数据同步到最新状态。

对于其他连接器(目前除 Sharepoint Online 连接器外的所有连接器),增量同步由框架以通用方式完成,这在前面的章节之一 “跳过将未修改的文档提取到 Elasticsearch” 中进行了描述。

连接器仍然从第三方数据源收集所有数据(因为它不提供仅提取更改的记录的方法)。但是,如果此数据包含时间戳,则连接器框架会将已提取文档的文档 ID 和时间戳与传入文档进行比较。如果 Elasticsearch 中存在文档,并且时间戳与从第三方数据源收到的时间戳相同,则不会将此文档发送到 Elasticsearch。

我们已经描述了使用增量同步来提高性能的抽象方法,但我们已经在连接器中实现了这些方法,所以让我们深入研究一下实际数字吧!

性能测试

我们将通过这些性能测试估计增量同步的粗略改进幅度,但目标不是高精度。

之所以选择 Google Drive 和 Github 作为本次测试的两个连接器,是因为它们具有不同的 IO 配置文件。

Google Drive 就像一个文件存储。它:

  • 有一个快速的 API,不会过早节流
  • 通常存储大量可变大小的二进制内容 - 从小到非常大
  • 通常存储少量记录 -​​ 数万或数十万而不是数百万

GitHub 数据是通过更经典的 API 提取的,它:

  • 经常节流
  • 包含许多比 Google Drive 中的记录小得多的记录
  • 根本不发送二进制内容

由于这些差异,增量同步性能将有很大不同。

两项测试都包含以下强制性步骤:

  1. 对第三方系统进行完全同步
  2. 修改第三方系统上的某些文档
  3. 运行增量同步并检查所需的时间

此设置非常简单,但已经可以很好地表明性能改进的程度。两项测试略有不同,我将在下一节中提供结果和评论。

设置 #1 - Google Drive 连接器

初始设置如下:

  • Google Drive 上有 1 个文件夹,其中包含 1553 个文件(其中 100 个大小为 2MB,1443 个大小为 5KB)
  • 执行完全同步并将这些数据输入 Elasticsearch
  • 将更多文件添加到 Google Drive 中,使其文件数达到 10144 个(其中 100 个大小为 2MB,其余文件大小均为 5KB)
  • 再次执行增量同步以提取新数据
  • 然后对 Google Drive 上的文件进行一些细微更改(添加 1 个,删除 2 个)
  • 再次执行增量同步
  • 再次执行完全同步以将运行时间与增量同步进行比较

下表包含所述测试的结果和注释:

Sync 描述运行时间添加文档数文档删除数注释
初始完全同步0h 4m 0s15530这是初始同步 - 它会提取所有文档
在 Google Drive 中添加更多数据后进行增量同步0h 20m 9s79390运行时间如预期一样长 - 大量文档输入
Google Drive 中的部分数据发生轻微更改后进行增量同步0h 1m 25s12运行速度非常快。它仍然大量调用 Google Drive API,但不必将 200+MB 的数据导入 Elasticsearch
完全同步以比较性能0h 23m 23s101440正如预期的那样,这需要花费大量时间 —— 所有数据都从 Google Drive 下载并发送到 Elasticsearch,即使数据没有变化。我们可以假设下载数据并将其上传到 Elasticsearch 进行设置需要 22 分钟

总之,增量同步显著提高了连接器的性能,因为大部分时间都花在连接器下载文件内容并将这些内容发送到 Elasticsearch 上。完全同步带来 2 * 100 + 1443 * 5 / 1024 = 207MB 的内容 - 既由连接器下载,又被提取到 Elasticsearch 中。如果只更改 1 个大文件,则这个数量只会变为 2MB - 变化幅度为 100。这很好地解释了性能改进。

设置 #2:Gi​​tHub 连接器

GitHub 连接器非常不同,因为它同步的实际数据量相对较小 - 问题、拉取请求等相当小,而它们却很多。此外,GitHub 有严格的限制政策,并且会大量限制连接器。

为了给出一个很好的现实世界示例,我们将使用 Kibana Github 存储库和 GitHub 连接器并观察其性能。

Sync 描述运行时间添加的文档数删除的文档数注释
初始完全同步8h 40m 1s1474210---
增量同步立即运行9h 6m 7s590这次同步花费了更多时间,主要是因为它不断受到限制。连接器必须从 GitHub 获取所有数据,但只发送了 59 条记录,总容量不到 1MB
下一次增量同步9h 2m 52s1911本次同步是在上一次增量同步完成后立即触发的。由于数据几乎相同,且节流是连接器运行时间的主要因素,因此运行时间相同

关键要点

如你所见,增量同步对 Github 连接器的性能没有任何改进 - 几乎没有任何优化空间,因为连接器大部分时间都花在查询系统和等待节流停止上。
提取的文档相当小,因此网络吞吐量使用量很小。为了缩短连接器的运行时间,增量同步实际上必须限制对 Github 的查询次数,但目前它尚未在连接器中实现。

总结

影响增量同步性能的主要因素是什么?简而言之,就是提取的原始数据量。

对于 Sharepoint Online 连接器,有一种特殊的逻辑可以通过增量 API 获取较少的数据。这节省了大量时间,因为增量 API 允许连接器不提取未更改的文件。文件往往很大,因此不下载和提取它们将节省大量时间。

对于其他连接器,增量同步是通用的 - 它只是在将文档提取到 Elasticsearch 之前检查文档时间戳 - 如果此文档已在索引中并且时间戳没有更改,则不会提取它。它比 Sharepoint Online 采用的以前的方法节省的时间更少,但适用于所有连接器。一些连接器(包含大型文档的连接器)从这种逻辑中受益匪浅,而其他连接器(受到第三方系统限制且包含相对较小的文档的连接器)则无法从增量同步中获益。

此外,如果 Elasticsearch 负载过重,增量同步不太可能受到 Elasticsearch 的限制,从而使其在负载下性能更高。

让我们看看下面的图表:

在图表中,你可以看到内容提取和提取的每个部分在时间线上花费了多少时间。在上面的例子中,连接器花费最多的时间用于提取数据,甚至暂停提取和下载内容。在这种情况下,增量同步有可能将同步的运行时间提高 30 - 40%。

让我们看另一个例子 - 一个具有节流和低吞吐量但在 Elasticsearch 中存储很少数据的系统(Sharepoint Online、GitHub、Jira、Confluence):

该系统不会从通用增量同步中受益太多 - 大部分时间都花在从第三方系统提取内容上。

最后一个例子 - 快速且可访问的系统,在 Elasticsearch(Google Drive、Box、OneDrive、Network Drive)中存储大量数据:

如果在同步之间,此类系统中没有太多条目发生变化,则通用增量同步将使该系统受益匪浅。

目前,可能从增量同步中获益最多的连接器有:

  • Azure Blob Storage
  • Box
  • Dropbox
  • Google Cloud Storage
  • Google Drive
  • Network Drive
  • OneDrive
  • S3
  • Sharepoint Online

其他连接器从增量同步中获益较少,或者根本没有获益,但这里没有一刀切的答案。性能在很大程度上取决于所摄取数据的概况。每个单独的文档越大,收益就越大。

你可以使用来自任何来源的数据构建搜索。查看此网络研讨会,了解 Elasticsearch 支持的不同连接器和来源。
准备好自己尝试一下了吗?开始免费试用。

原文:Elastic Connectors: Performance impact of incremental syncs — Elastic Search Labs

这篇关于Elastic Connectors:增量同步对性能的影响的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1030577

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Golang中拼接字符串的6种方式性能对比

《Golang中拼接字符串的6种方式性能对比》golang的string类型是不可修改的,对于拼接字符串来说,本质上还是创建一个新的对象将数据放进去,主要有6种拼接方式,下面小编就来为大家详细讲讲吧... 目录拼接方式介绍性能对比测试代码测试结果源码分析golang的string类型是不可修改的,对于拼接字

Linux搭建Mysql主从同步的教程

《Linux搭建Mysql主从同步的教程》:本文主要介绍Linux搭建Mysql主从同步的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux搭建mysql主从同步1.启动mysql服务2.修改Mysql主库配置文件/etc/my.cnf3.重启主库my

mysql线上查询之前要性能调优的技巧及示例

《mysql线上查询之前要性能调优的技巧及示例》文章介绍了查询优化的几种方法,包括使用索引、避免不必要的列和行、有效的JOIN策略、子查询和派生表的优化、查询提示和优化器提示等,这些方法可以帮助提高数... 目录避免不必要的列和行使用有效的JOIN策略使用子查询和派生表时要小心使用查询提示和优化器提示其他常

Java中将异步调用转为同步的五种实现方法

《Java中将异步调用转为同步的五种实现方法》本文介绍了将异步调用转为同步阻塞模式的五种方法:wait/notify、ReentrantLock+Condition、Future、CountDownL... 目录异步与同步的核心区别方法一:使用wait/notify + synchronized代码示例关键

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

SpringBoot中的404错误:原因、影响及解决策略

《SpringBoot中的404错误:原因、影响及解决策略》本文详细介绍了SpringBoot中404错误的出现原因、影响以及处理策略,404错误常见于URL路径错误、控制器配置问题、静态资源配置错误... 目录Spring Boot中的404错误:原因、影响及处理策略404错误的出现原因1. URL路径错