风电Weibull+随机出力!利用ARMA模型随机生成风速+风速Weibull分布程序代码!

本文主要是介绍风电Weibull+随机出力!利用ARMA模型随机生成风速+风速Weibull分布程序代码!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

随着能源问题日益突出,风力发电等以可再生能源为基础的发电技术越来越受到关注。建立能够正确反映实际风速特性的风速模型是研究风力发电系统控制策略以及并网运行特性的重要基础叫。由于风速的随机性和波动性,系统中的机械设备和电气设备以及电网均会受到扰动,这种扰动对于系统设备的寿命、运行性能以及电网的稳定性都将产生一定的影响。因而,在研究风电场接入电网的功率波动与电能质量等动态特性时,需要建立与之相适应的风速模型。

ARMA模型

自回归滑动平均模型(Auto-Regressive and Moving Average ,ARMA)是研究时间序列的重要方法,已广泛应用于经济学、股票、期货等领域当中。其原理是利用已知的信号序列、误差以及已知序列对信号自身的影响规律来预测未来的信号序列。ARMA模型描述了离散随机信号中各序列之间的依存关系。ARMA模型具有以下特征:

1)以线性差分方程描述离散随机信号序列;

2)任何一个有理式的功率谱都可以用一个ARMA随机过程的功率密度谱精确逼近;

3)ARMA模型满足Yule-Walker方程;

两参数Weibull分布

两参数的Weibull分布模型是适用范围最广、拟合实际风速最好的模型,它能调整参数来适应不同时间长度(通常是一个月或一年)的风速序列。在风速和风能评估方面已有很多应用。

两参数的Weibull分布的概率密度函数如下式所示:

其分布函数如下式所示:

程序介绍

自回归滑动平均模型(ARMA)是分析时间序列的重要方法。在分析实际风速统计特性和ARMA模型性质的基础上,建立了可用于动态仿真的短期风速模型。程序结果表明,所得风速序列能够正确反映实际风速的特性。在风能领域Weibul分布常用于描述风速的分布特征,通过拟合Weibull分布可以得到风速的概率密度分布,为风能资源的评估和风电场的布局提供重要依据。程序中算例丰富,注释清晰,干货满满,创新性和可扩展性很高,下面对程序做简要介绍!

程序结果

ARMA模型结果

风速Weibull分布结果

部分程序

%初始化
I=0.16;%湍流强度​L=600;%湍流尺度
average_v=8.11850232757234;%平均风速
Ts=1;%采样时间T=720;%模拟时间​n=T/Ts;%采样个数
sigma_u=3.48648820169842;%风速序列的标准差 
sigma_noise=0.2;%白噪声的方差
% u=yyx_noice_n(0,sigma_noise,n);%产生n个序列的白噪声,均值为0,方差为1;
u=normrnd(0,sigma_noise,n);​df=1/T;%频率分辨率
f=(0:n-1)*df;length_f=length(f);​
​S(i)=4*(sigma_u)^2*L/average_v/(1+70.8*(f(i)*L/average_v)^2)^(5/6);%Von Karman谱功率密度函数
R=real(ifft(S));%自相关与功率谱密度是傅立叶变换关系,求自相关​
%求解AR模型参数
a(1)=R(2)/R(1);​a(2)=R(3)/R(1)-R(2)*R(2)/R(1)/R(1);
%求解MA模型参数
Ry=(-a(1)+a(2)*a(1))*R(1)+(1+a(1)^2+a(2)^2)*R(2)+(-a(1)+a(1)*a(2))*R(3)+(-a(2))*R(4);
b=Ry/sigma_noise;%beta=Ry/白噪声的方差​
%脉动风速
v(1)=u(1);​v(2)=a(1)*v(1)+u(2)+b*u(1);
​​v(k)=a(1)*v(k-1)+a(2)*v(k-2)+u(k)+b*u(k-1);%ARMA模型

部分内容源自网络,侵权联系删除!

欢迎感兴趣的关注并私信获取完整版代码,小编会不定期更新高质量的学习资料、文章和程序代码,为您的科研加油助力!

这篇关于风电Weibull+随机出力!利用ARMA模型随机生成风速+风速Weibull分布程序代码!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028988

相关文章

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

C/C++随机数生成的五种方法

《C/C++随机数生成的五种方法》C++作为一种古老的编程语言,其随机数生成的方法已经经历了多次的变革,早期的C++版本使用的是rand()函数和RAND_MAX常量,这种方法虽然简单,但并不总是提供... 目录C/C++ 随机数生成方法1. 使用 rand() 和 srand()2. 使用 <random

Flask 验证码自动生成的实现示例

《Flask验证码自动生成的实现示例》本文主要介绍了Flask验证码自动生成的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习... 目录生成图片以及结果处理验证码蓝图html页面展示想必验证码大家都有所了解,但是可以自己定义图片验证码

Python如何在Word中生成多种不同类型的图表

《Python如何在Word中生成多种不同类型的图表》Word文档中插入图表不仅能直观呈现数据,还能提升文档的可读性和专业性,本文将介绍如何使用Python在Word文档中创建和自定义各种图表,需要的... 目录在Word中创建柱形图在Word中创建条形图在Word中创建折线图在Word中创建饼图在Word

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

nginx生成自签名SSL证书配置HTTPS的实现

《nginx生成自签名SSL证书配置HTTPS的实现》本文主要介绍在Nginx中生成自签名SSL证书并配置HTTPS,包括安装Nginx、创建证书、配置证书以及测试访问,具有一定的参考价值,感兴趣的可... 目录一、安装nginx二、创建证书三、配置证书并验证四、测试一、安装nginxnginx必须有"-