风电Weibull+随机出力!利用ARMA模型随机生成风速+风速Weibull分布程序代码!

本文主要是介绍风电Weibull+随机出力!利用ARMA模型随机生成风速+风速Weibull分布程序代码!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

随着能源问题日益突出,风力发电等以可再生能源为基础的发电技术越来越受到关注。建立能够正确反映实际风速特性的风速模型是研究风力发电系统控制策略以及并网运行特性的重要基础叫。由于风速的随机性和波动性,系统中的机械设备和电气设备以及电网均会受到扰动,这种扰动对于系统设备的寿命、运行性能以及电网的稳定性都将产生一定的影响。因而,在研究风电场接入电网的功率波动与电能质量等动态特性时,需要建立与之相适应的风速模型。

ARMA模型

自回归滑动平均模型(Auto-Regressive and Moving Average ,ARMA)是研究时间序列的重要方法,已广泛应用于经济学、股票、期货等领域当中。其原理是利用已知的信号序列、误差以及已知序列对信号自身的影响规律来预测未来的信号序列。ARMA模型描述了离散随机信号中各序列之间的依存关系。ARMA模型具有以下特征:

1)以线性差分方程描述离散随机信号序列;

2)任何一个有理式的功率谱都可以用一个ARMA随机过程的功率密度谱精确逼近;

3)ARMA模型满足Yule-Walker方程;

两参数Weibull分布

两参数的Weibull分布模型是适用范围最广、拟合实际风速最好的模型,它能调整参数来适应不同时间长度(通常是一个月或一年)的风速序列。在风速和风能评估方面已有很多应用。

两参数的Weibull分布的概率密度函数如下式所示:

其分布函数如下式所示:

程序介绍

自回归滑动平均模型(ARMA)是分析时间序列的重要方法。在分析实际风速统计特性和ARMA模型性质的基础上,建立了可用于动态仿真的短期风速模型。程序结果表明,所得风速序列能够正确反映实际风速的特性。在风能领域Weibul分布常用于描述风速的分布特征,通过拟合Weibull分布可以得到风速的概率密度分布,为风能资源的评估和风电场的布局提供重要依据。程序中算例丰富,注释清晰,干货满满,创新性和可扩展性很高,下面对程序做简要介绍!

程序结果

ARMA模型结果

风速Weibull分布结果

部分程序

%初始化
I=0.16;%湍流强度​L=600;%湍流尺度
average_v=8.11850232757234;%平均风速
Ts=1;%采样时间T=720;%模拟时间​n=T/Ts;%采样个数
sigma_u=3.48648820169842;%风速序列的标准差 
sigma_noise=0.2;%白噪声的方差
% u=yyx_noice_n(0,sigma_noise,n);%产生n个序列的白噪声,均值为0,方差为1;
u=normrnd(0,sigma_noise,n);​df=1/T;%频率分辨率
f=(0:n-1)*df;length_f=length(f);​
​S(i)=4*(sigma_u)^2*L/average_v/(1+70.8*(f(i)*L/average_v)^2)^(5/6);%Von Karman谱功率密度函数
R=real(ifft(S));%自相关与功率谱密度是傅立叶变换关系,求自相关​
%求解AR模型参数
a(1)=R(2)/R(1);​a(2)=R(3)/R(1)-R(2)*R(2)/R(1)/R(1);
%求解MA模型参数
Ry=(-a(1)+a(2)*a(1))*R(1)+(1+a(1)^2+a(2)^2)*R(2)+(-a(1)+a(1)*a(2))*R(3)+(-a(2))*R(4);
b=Ry/sigma_noise;%beta=Ry/白噪声的方差​
%脉动风速
v(1)=u(1);​v(2)=a(1)*v(1)+u(2)+b*u(1);
​​v(k)=a(1)*v(k-1)+a(2)*v(k-2)+u(k)+b*u(k-1);%ARMA模型

部分内容源自网络,侵权联系删除!

欢迎感兴趣的关注并私信获取完整版代码,小编会不定期更新高质量的学习资料、文章和程序代码,为您的科研加油助力!

这篇关于风电Weibull+随机出力!利用ARMA模型随机生成风速+风速Weibull分布程序代码!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028988

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe