用 OpenCV 实现图像中水平线检测与校正

2024-06-04 02:28

本文主要是介绍用 OpenCV 实现图像中水平线检测与校正,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在本文中,我们将探讨如何使用 Python 和 OpenCV 库来检测图像中的水平线,并对图像进行旋转校正以使这些线条水平。这种技术可广泛应用于文档扫描、建筑摄影校正以及机器视觉中的各种场景。

环境准备

首先,确保您的环境中安装了 OpenCV 库。如果还没有安装,可以通过以下命令安装,要注意尽管代码里我们都是使用的cv2,但是安装包要选opencv-python:

pip install opencv-python

试验效果

原始图像

在这里插入图片描述

找出水平线

在这里插入图片描述

基于统计角度旋转

在这里插入图片描述

步骤概述

  1. 图像加载与预处理:加载图像,转换为灰度图,然后使用 Canny 算法检测边缘。
  2. 线条检测:应用霍夫变换来识别图像中的线条。
  3. 水平线条筛选:过滤出接近水平的线条。
  4. 线条可视化:在图像上绘制检测到的水平线。
  5. 计算需要的旋转角度:计算线条的加权平均角度,以确定图像应旋转的角度。
  6. 图像旋转校正:根据计算出的角度旋转图像,以校正线条至水平。

详细实现

  1. 图像加载与预处理
    加载图像并将其转换为灰度图,这是大多数图像处理任务的常见做法,因为它简化了接下来的处理步骤。
image = cv2.imread('test.png') # 读取图片
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 转换成灰度图像
  1. 边缘检测
    使用 Canny 算法进行边缘检测,这是一种广泛使用的边缘检测算法,因为它有效地识别图像中的线条和边缘。
edges = cv2.Canny(gray, 50, 150, apertureSize=3)

参数详解
gray:这是输入图像,Canny 边缘检测通常在灰度图像上进行,因为边缘检测是基于图像亮度变化的。
50:第一个阈值用于边缘检测的低阈值。这是用于Canny算法中的双阈值过程的较低边界。低于此阈值的像素点不会被视为边缘。
150:第二个阈值用于边缘检测的高阈值。这是用于Canny算法中的双阈值过程的较高边界。高于此阈值的像素点将被视为边缘的强候选者。
apertureSize=3:这是用于内部边缘检测的Sobel算子的大小。apertureSize定义了计算图像梯度所用的Sobel核的大小。常用的尺寸是3,但也可以使用更大的尺寸如5或7,这在处理较大的边缘时可以提供更平滑的结果。

  1. 线条检测与筛选
    通过霍夫变换检测线条,然后筛选出接近水平的线条。我们定义了一个函数 filter_horizontal_lines,它计算每条线的角度,并筛选出角度小于设定阈值的线条。
	def filter_horizontal_lines(lines, angle_threshold=10):horizontal_lines = []if lines is not None:for line in lines:x1, y1, x2, y2 = line[0]angle = np.degrees(np.arctan2(y2 - y1, x2 - x1))if abs(angle) < angle_threshold:horizontal_lines.append(line)return horizontal_lineslines = cv2.HoughLinesP(edges, 1, np.pi / 180, 100, minLineLength=100, maxLineGap=10)horizontal_lines = filter_horizontal_lines(lines)

HoughLinesP参数说明

# HoughLinesP使用概率霍夫变换检测图像中的线段 (注意HoughLines和HoughLinesP是两个函数方法)
lines = cv2.HoughLinesP(edges,             # 边缘图像,通常是Canny边缘检测的输出1,                 # rho - 累加器的距离精度,以像素为单位np.pi / 180,       # theta - 累加器的角度精度,以弧度为单位100,               # threshold - 累加器的阈值,仅返回大于此阈值的线段minLineLength=100, # minLineLength - 线段的最小长度maxLineGap=10      # maxLineGap - 同一线条上允许的最大间隙
)
  1. 计算旋转角度
    我们定义了一个函数 calculate_average_angle,它计算所有检测到的水平线条的加权平均角度。这个角度将用于图像旋转校正。注意这里的np.average(angles, weights=lengths)使用了加权,也就是这个函数会基于找到的线段长度,进行角度的加权平均,如果你只是单纯的关注线段的所有角度,可以删掉weights这个参数。
def calculate_average_angle(lines):"""计算线条的加权平均角度。参数:lines (list): 包含线条的列表,每条线条由两个点的坐标表示,格式为 [x1, y1, x2, y2]。返回:float: 线条的加权平均角度,以度为单位。如果没有符合条件的线条,则返回 0。"""angles = []lengths = []if lines:for line in lines:x1, y1, x2, y2 = line[0]# 计算线条的长度length = np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)# 计算线条的角度,以度为单位angle = np.degrees(np.arctan2(y2 - y1, x2 - x1))# 角度校正,确保处理的角度是接近水平的if abs(angle) > 90:angle -= 180# 只考虑接近水平的线条if abs(angle) < 20:  # 可调整此阈值以更好地适应具体情况angles.append(angle)lengths.append(length)# 计算加权平均角度if lengths:average_angle = np.average(angles, weights=lengths)else:average_angle = 0return average_angleaverage_angle = calculate_average_angle(horizontal_lines) # 调用函数完成平均角度计算
  1. 图像旋转校正
    最后,我们基于返回的角度,旋转图像,使线条尽可能水平。我们使用 OpenCV 提供的仿射变换函数 cv2.warpAffine 来完成这个任务。
def rotate_image(image, angle):(h, w) = image.shape[:2]center = (w // 2, h // 2)M = cv2.getRotationMatrix2D(center, angle, 1.0)rotated = cv2.warpAffine(image, M, (w, h))return rotatedrotated_image = rotate_image(image, average_angle)
cv2.imwrite('rotated_image.jpg', rotated_image)

代码纯享版

import cv2
import numpy as npdef filter_horizontal_lines(lines, angle_threshold=10):horizontal_lines = []if lines is not None:for line in lines:x1, y1, x2, y2 = line[0]angle = np.degrees(np.arctan2(y2 - y1, x2 - x1))if abs(angle) < angle_threshold:horizontal_lines.append(line)return horizontal_lines
#
#
def calculate_average_angle(lines):angles = []lengths = []if lines:for line in lines:x1, y1, x2, y2 = line[0]length = np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)angle = np.degrees(np.arctan2(y2 - y1, x2 - x1))# 角度校正,确保处理的角度是接近水平的if abs(angle) > 90:angle -= 180# 只考虑接近水平的线条if abs(angle) < 20:  # 可调整此阈值以更好地适应具体情况angles.append(angle)lengths.append(length)# 计算加权平均角度if lengths:average_angle = np.average(angles, weights=lengths)else:average_angle = 0return average_angle# def calculate_average_angle(lines):
#     angles = []
#     lengths = []
#     filtered_lines = []
# 
#     if lines:
#         # 计算每条线的长度和角度
#         for line in lines:
#             x1, y1, x2, y2 = line[0]
#             length = np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
#             angle = np.degrees(np.arctan2(y2 - y1, x2 - x1))
# 
#             # 角度校正,确保处理的角度是接近水平的
#             if abs(angle) > 90:
#                 angle -= 180
#             if abs(angle) < 20:  # 只考虑接近水平的线条
#                 filtered_lines.append((angle, length))
# 
#         # 按长度排序,并取最长的前9条线
#         filtered_lines.sort(key=lambda x: x[1], reverse=True)
#         top_lines = filtered_lines[:9]
# 
#         # 分割角度和长度
#         angles, lengths = zip(*top_lines) if top_lines else ([], [])
# 
#     # 计算加权平均角度
#     if lengths:
#         average_angle = np.average(angles, weights=lengths)
#     else:
#         average_angle = 0
# 
#     return average_angle# 使用此函数时,确保传入的lines是过滤后只包含接近水平的线条def draw_lines(image, lines):for line in lines:x1, y1, x2, y2 = line[0]cv2.line(image, (x1, y1), (x2, y2), (0, 255, 0), 3)return imagedef rotate_image(image, angle):(h, w) = image.shape[:2]center = (w // 2, h // 2)M = cv2.getRotationMatrix2D(center, angle, 1.0)rotated = cv2.warpAffine(image, M, (w, h))return rotated# 加载图像
image = cv2.imread('test.png')# 转换为灰度图
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 边缘检测
edges = cv2.Canny(gray, 50, 150, apertureSize=3)# 使用霍夫变换检测线条
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=100, maxLineGap=10)# 过滤出横向线条
horizontal_lines = filter_horizontal_lines(lines)# 在原图上绘制检测到的横向线条
image_with_lines = draw_lines(np.copy(image), horizontal_lines)# 保存带线条的图像
cv2.imwrite('image_with_horizontal_lines.jpg', image_with_lines)# 计算线条的加权平均角度
average_angle = calculate_average_angle(horizontal_lines)
print("计算得到的加权平均角度为:", average_angle)# 旋转整个图像使线条水平
rotated_image = rotate_image(image, average_angle)  # 根据角度旋转 正角度表示逆时针旋转,而负角度表示顺时针旋转# 保存旋转后的图像
cv2.imwrite('rotated_image.jpg', rotated_image)print("旋转后的图像已保存为 'rotated_image.jpg'")

结论

通过上述步骤,我们能够自动检测并校正图像中的水平线,这对于许多自动化处理任务来说是非常有用的。本文介绍的方法仅依赖于 OpenCV,易于实现且效果显著。了解相关函数,通过适当调整参数,该技术可以适应不同的应用需求和条件。

这篇关于用 OpenCV 实现图像中水平线检测与校正的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028803

相关文章

C# string转unicode字符的实现

《C#string转unicode字符的实现》本文主要介绍了C#string转unicode字符的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录1. 获取字符串中每个字符的 Unicode 值示例代码:输出:2. 将 Unicode 值格式化

python安装whl包并解决依赖关系的实现

《python安装whl包并解决依赖关系的实现》本文主要介绍了python安装whl包并解决依赖关系的实现,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、什么是whl文件?二、我们为什么需要使用whl文件来安装python库?三、我们应该去哪儿下

Python脚本实现图片文件批量命名

《Python脚本实现图片文件批量命名》这篇文章主要为大家详细介绍了一个用python第三方库pillow写的批量处理图片命名的脚本,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言源码批量处理图片尺寸脚本源码GUI界面源码打包成.exe可执行文件前言本文介绍一个用python第三方库pi

Java中将异步调用转为同步的五种实现方法

《Java中将异步调用转为同步的五种实现方法》本文介绍了将异步调用转为同步阻塞模式的五种方法:wait/notify、ReentrantLock+Condition、Future、CountDownL... 目录异步与同步的核心区别方法一:使用wait/notify + synchronized代码示例关键

Nginx实现动态封禁IP的步骤指南

《Nginx实现动态封禁IP的步骤指南》在日常的生产环境中,网站可能会遭遇恶意请求、DDoS攻击或其他有害的访问行为,为了应对这些情况,动态封禁IP是一项十分重要的安全策略,本篇博客将介绍如何通过NG... 目录1、简述2、实现方式3、使用 fail2ban 动态封禁3.1 安装 fail2ban3.2 配

Java中实现订单超时自动取消功能(最新推荐)

《Java中实现订单超时自动取消功能(最新推荐)》本文介绍了Java中实现订单超时自动取消功能的几种方法,包括定时任务、JDK延迟队列、Redis过期监听、Redisson分布式延迟队列、Rocket... 目录1、定时任务2、JDK延迟队列 DelayQueue(1)定义实现Delayed接口的实体类 (

将java程序打包成可执行文件的实现方式

《将java程序打包成可执行文件的实现方式》本文介绍了将Java程序打包成可执行文件的三种方法:手动打包(将编译后的代码及JRE运行环境一起打包),使用第三方打包工具(如Launch4j)和JDK自带... 目录1.问题提出2.如何将Java程序打包成可执行文件2.1将编译后的代码及jre运行环境一起打包2

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

MySQL8.0设置redo缓存大小的实现

《MySQL8.0设置redo缓存大小的实现》本文主要在MySQL8.0.30及之后版本中使用innodb_redo_log_capacity参数在线更改redo缓存文件大小,下面就来介绍一下,具有一... mysql 8.0.30及之后版本可以使用innodb_redo_log_capacity参数来更改

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在