用 OpenCV 实现图像中水平线检测与校正

2024-06-04 02:28

本文主要是介绍用 OpenCV 实现图像中水平线检测与校正,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

在本文中,我们将探讨如何使用 Python 和 OpenCV 库来检测图像中的水平线,并对图像进行旋转校正以使这些线条水平。这种技术可广泛应用于文档扫描、建筑摄影校正以及机器视觉中的各种场景。

环境准备

首先,确保您的环境中安装了 OpenCV 库。如果还没有安装,可以通过以下命令安装,要注意尽管代码里我们都是使用的cv2,但是安装包要选opencv-python:

pip install opencv-python

试验效果

原始图像

在这里插入图片描述

找出水平线

在这里插入图片描述

基于统计角度旋转

在这里插入图片描述

步骤概述

  1. 图像加载与预处理:加载图像,转换为灰度图,然后使用 Canny 算法检测边缘。
  2. 线条检测:应用霍夫变换来识别图像中的线条。
  3. 水平线条筛选:过滤出接近水平的线条。
  4. 线条可视化:在图像上绘制检测到的水平线。
  5. 计算需要的旋转角度:计算线条的加权平均角度,以确定图像应旋转的角度。
  6. 图像旋转校正:根据计算出的角度旋转图像,以校正线条至水平。

详细实现

  1. 图像加载与预处理
    加载图像并将其转换为灰度图,这是大多数图像处理任务的常见做法,因为它简化了接下来的处理步骤。
image = cv2.imread('test.png') # 读取图片
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 转换成灰度图像
  1. 边缘检测
    使用 Canny 算法进行边缘检测,这是一种广泛使用的边缘检测算法,因为它有效地识别图像中的线条和边缘。
edges = cv2.Canny(gray, 50, 150, apertureSize=3)

参数详解
gray:这是输入图像,Canny 边缘检测通常在灰度图像上进行,因为边缘检测是基于图像亮度变化的。
50:第一个阈值用于边缘检测的低阈值。这是用于Canny算法中的双阈值过程的较低边界。低于此阈值的像素点不会被视为边缘。
150:第二个阈值用于边缘检测的高阈值。这是用于Canny算法中的双阈值过程的较高边界。高于此阈值的像素点将被视为边缘的强候选者。
apertureSize=3:这是用于内部边缘检测的Sobel算子的大小。apertureSize定义了计算图像梯度所用的Sobel核的大小。常用的尺寸是3,但也可以使用更大的尺寸如5或7,这在处理较大的边缘时可以提供更平滑的结果。

  1. 线条检测与筛选
    通过霍夫变换检测线条,然后筛选出接近水平的线条。我们定义了一个函数 filter_horizontal_lines,它计算每条线的角度,并筛选出角度小于设定阈值的线条。
	def filter_horizontal_lines(lines, angle_threshold=10):horizontal_lines = []if lines is not None:for line in lines:x1, y1, x2, y2 = line[0]angle = np.degrees(np.arctan2(y2 - y1, x2 - x1))if abs(angle) < angle_threshold:horizontal_lines.append(line)return horizontal_lineslines = cv2.HoughLinesP(edges, 1, np.pi / 180, 100, minLineLength=100, maxLineGap=10)horizontal_lines = filter_horizontal_lines(lines)

HoughLinesP参数说明

# HoughLinesP使用概率霍夫变换检测图像中的线段 (注意HoughLines和HoughLinesP是两个函数方法)
lines = cv2.HoughLinesP(edges,             # 边缘图像,通常是Canny边缘检测的输出1,                 # rho - 累加器的距离精度,以像素为单位np.pi / 180,       # theta - 累加器的角度精度,以弧度为单位100,               # threshold - 累加器的阈值,仅返回大于此阈值的线段minLineLength=100, # minLineLength - 线段的最小长度maxLineGap=10      # maxLineGap - 同一线条上允许的最大间隙
)
  1. 计算旋转角度
    我们定义了一个函数 calculate_average_angle,它计算所有检测到的水平线条的加权平均角度。这个角度将用于图像旋转校正。注意这里的np.average(angles, weights=lengths)使用了加权,也就是这个函数会基于找到的线段长度,进行角度的加权平均,如果你只是单纯的关注线段的所有角度,可以删掉weights这个参数。
def calculate_average_angle(lines):"""计算线条的加权平均角度。参数:lines (list): 包含线条的列表,每条线条由两个点的坐标表示,格式为 [x1, y1, x2, y2]。返回:float: 线条的加权平均角度,以度为单位。如果没有符合条件的线条,则返回 0。"""angles = []lengths = []if lines:for line in lines:x1, y1, x2, y2 = line[0]# 计算线条的长度length = np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)# 计算线条的角度,以度为单位angle = np.degrees(np.arctan2(y2 - y1, x2 - x1))# 角度校正,确保处理的角度是接近水平的if abs(angle) > 90:angle -= 180# 只考虑接近水平的线条if abs(angle) < 20:  # 可调整此阈值以更好地适应具体情况angles.append(angle)lengths.append(length)# 计算加权平均角度if lengths:average_angle = np.average(angles, weights=lengths)else:average_angle = 0return average_angleaverage_angle = calculate_average_angle(horizontal_lines) # 调用函数完成平均角度计算
  1. 图像旋转校正
    最后,我们基于返回的角度,旋转图像,使线条尽可能水平。我们使用 OpenCV 提供的仿射变换函数 cv2.warpAffine 来完成这个任务。
def rotate_image(image, angle):(h, w) = image.shape[:2]center = (w // 2, h // 2)M = cv2.getRotationMatrix2D(center, angle, 1.0)rotated = cv2.warpAffine(image, M, (w, h))return rotatedrotated_image = rotate_image(image, average_angle)
cv2.imwrite('rotated_image.jpg', rotated_image)

代码纯享版

import cv2
import numpy as npdef filter_horizontal_lines(lines, angle_threshold=10):horizontal_lines = []if lines is not None:for line in lines:x1, y1, x2, y2 = line[0]angle = np.degrees(np.arctan2(y2 - y1, x2 - x1))if abs(angle) < angle_threshold:horizontal_lines.append(line)return horizontal_lines
#
#
def calculate_average_angle(lines):angles = []lengths = []if lines:for line in lines:x1, y1, x2, y2 = line[0]length = np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)angle = np.degrees(np.arctan2(y2 - y1, x2 - x1))# 角度校正,确保处理的角度是接近水平的if abs(angle) > 90:angle -= 180# 只考虑接近水平的线条if abs(angle) < 20:  # 可调整此阈值以更好地适应具体情况angles.append(angle)lengths.append(length)# 计算加权平均角度if lengths:average_angle = np.average(angles, weights=lengths)else:average_angle = 0return average_angle# def calculate_average_angle(lines):
#     angles = []
#     lengths = []
#     filtered_lines = []
# 
#     if lines:
#         # 计算每条线的长度和角度
#         for line in lines:
#             x1, y1, x2, y2 = line[0]
#             length = np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
#             angle = np.degrees(np.arctan2(y2 - y1, x2 - x1))
# 
#             # 角度校正,确保处理的角度是接近水平的
#             if abs(angle) > 90:
#                 angle -= 180
#             if abs(angle) < 20:  # 只考虑接近水平的线条
#                 filtered_lines.append((angle, length))
# 
#         # 按长度排序,并取最长的前9条线
#         filtered_lines.sort(key=lambda x: x[1], reverse=True)
#         top_lines = filtered_lines[:9]
# 
#         # 分割角度和长度
#         angles, lengths = zip(*top_lines) if top_lines else ([], [])
# 
#     # 计算加权平均角度
#     if lengths:
#         average_angle = np.average(angles, weights=lengths)
#     else:
#         average_angle = 0
# 
#     return average_angle# 使用此函数时,确保传入的lines是过滤后只包含接近水平的线条def draw_lines(image, lines):for line in lines:x1, y1, x2, y2 = line[0]cv2.line(image, (x1, y1), (x2, y2), (0, 255, 0), 3)return imagedef rotate_image(image, angle):(h, w) = image.shape[:2]center = (w // 2, h // 2)M = cv2.getRotationMatrix2D(center, angle, 1.0)rotated = cv2.warpAffine(image, M, (w, h))return rotated# 加载图像
image = cv2.imread('test.png')# 转换为灰度图
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 边缘检测
edges = cv2.Canny(gray, 50, 150, apertureSize=3)# 使用霍夫变换检测线条
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=100, maxLineGap=10)# 过滤出横向线条
horizontal_lines = filter_horizontal_lines(lines)# 在原图上绘制检测到的横向线条
image_with_lines = draw_lines(np.copy(image), horizontal_lines)# 保存带线条的图像
cv2.imwrite('image_with_horizontal_lines.jpg', image_with_lines)# 计算线条的加权平均角度
average_angle = calculate_average_angle(horizontal_lines)
print("计算得到的加权平均角度为:", average_angle)# 旋转整个图像使线条水平
rotated_image = rotate_image(image, average_angle)  # 根据角度旋转 正角度表示逆时针旋转,而负角度表示顺时针旋转# 保存旋转后的图像
cv2.imwrite('rotated_image.jpg', rotated_image)print("旋转后的图像已保存为 'rotated_image.jpg'")

结论

通过上述步骤,我们能够自动检测并校正图像中的水平线,这对于许多自动化处理任务来说是非常有用的。本文介绍的方法仅依赖于 OpenCV,易于实现且效果显著。了解相关函数,通过适当调整参数,该技术可以适应不同的应用需求和条件。

这篇关于用 OpenCV 实现图像中水平线检测与校正的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028803

相关文章

C++对象布局及多态实现探索之内存布局(整理的很多链接)

本文通过观察对象的内存布局,跟踪函数调用的汇编代码。分析了C++对象内存的布局情况,虚函数的执行方式,以及虚继承,等等 文章链接:http://dev.yesky.com/254/2191254.shtml      论C/C++函数间动态内存的传递 (2005-07-30)   当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道。 文章链接:http://dev.yesky

Java五子棋之坐标校正

上篇针对了Java项目中的解构思维,在这篇内容中我们不妨从整体项目中拆解拿出一个非常重要的五子棋逻辑实现:坐标校正,我们如何使漫无目的鼠标点击变得有序化和可控化呢? 目录 一、从鼠标监听到获取坐标 1.MouseListener和MouseAdapter 2.mousePressed方法 二、坐标校正的具体实现方法 1.关于fillOval方法 2.坐标获取 3.坐标转换 4.坐

vcpkg安装opencv中的特殊问题记录(无法找到opencv_corexd.dll)

我是按照网上的vcpkg安装opencv方法进行的(比如这篇:从0开始在visual studio上安装opencv(超详细,针对小白)),但是中间出现了一些别人没有遇到的问题,虽然原因没有找到,但是本人给出一些暂时的解决办法: 问题1: 我在安装库命令行使用的是 .\vcpkg.exe install opencv 我的电脑是x64,vcpkg在这条命令后默认下载的也是opencv2:x6

通过SSH隧道实现通过远程服务器上外网

搭建隧道 autossh -M 0 -f -D 1080 -C -N user1@remotehost##验证隧道是否生效,查看1080端口是否启动netstat -tuln | grep 1080## 测试ssh 隧道是否生效curl -x socks5h://127.0.0.1:1080 -I http://www.github.com 将autossh 设置为服务,隧道开机启动

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测 目录 时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测基本介绍程序设计参考资料 基本介绍 MATLAB实现LSTM时间序列未来多步预测-递归预测。LSTM是一种含有LSTM区块(blocks)或其他的一种类神经网络,文献或其他资料中LSTM区块可能被描述成智能网络单元,因为

vue项目集成CanvasEditor实现Word在线编辑器

CanvasEditor实现Word在线编辑器 官网文档:https://hufe.club/canvas-editor-docs/guide/schema.html 源码地址:https://github.com/Hufe921/canvas-editor 前提声明: 由于CanvasEditor目前不支持vue、react 等框架开箱即用版,所以需要我们去Git下载源码,拿到其中两个主

android一键分享功能部分实现

为什么叫做部分实现呢,其实是我只实现一部分的分享。如新浪微博,那还有没去实现的是微信分享。还有一部分奇怪的问题:我QQ分享跟QQ空间的分享功能,我都没配置key那些都是原本集成就有的key也可以实现分享,谁清楚的麻烦详解下。 实现分享功能我们可以去www.mob.com这个网站集成。免费的,而且还有短信验证功能。等这分享研究完后就研究下短信验证功能。 开始实现步骤(新浪分享,以下是本人自己实现

基于Springboot + vue 的抗疫物质管理系统的设计与实现

目录 📚 前言 📑摘要 📑系统流程 📚 系统架构设计 📚 数据库设计 📚 系统功能的具体实现    💬 系统登录注册 系统登录 登录界面   用户添加  💬 抗疫列表展示模块     区域信息管理 添加物资详情 抗疫物资列表展示 抗疫物资申请 抗疫物资审核 ✒️ 源码实现 💖 源码获取 😁 联系方式 📚 前言 📑博客主页:

探索蓝牙协议的奥秘:用ESP32实现高质量蓝牙音频传输

蓝牙(Bluetooth)是一种短距离无线通信技术,广泛应用于各种电子设备之间的数据传输。自1994年由爱立信公司首次提出以来,蓝牙技术已经经历了多个版本的更新和改进。本文将详细介绍蓝牙协议,并通过一个具体的项目——使用ESP32实现蓝牙音频传输,来展示蓝牙协议的实际应用及其优点。 蓝牙协议概述 蓝牙协议栈 蓝牙协议栈是蓝牙技术的核心,定义了蓝牙设备之间如何进行通信。蓝牙协议

python实现最简单循环神经网络(RNNs)

Recurrent Neural Networks(RNNs) 的模型: 上图中红色部分是输入向量。文本、单词、数据都是输入,在网络里都以向量的形式进行表示。 绿色部分是隐藏向量。是加工处理过程。 蓝色部分是输出向量。 python代码表示如下: rnn = RNN()y = rnn.step(x) # x为输入向量,y为输出向量 RNNs神经网络由神经元组成, python