超分辨重建——SRGAN网络训练自己数据集与推理测试(详细图文教程)

本文主要是介绍超分辨重建——SRGAN网络训练自己数据集与推理测试(详细图文教程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

💪 专业从事且热爱图像处理,图像处理专栏更新如下👇:
📝《图像去噪》
📝《超分辨率重建》
📝《语义分割》
📝《风格迁移》
📝《目标检测》
📝《暗光增强》
📝《模型优化》
📝《模型实战部署》

😊总结不易,多多支持呀🌹感谢您的点赞👍收藏⭐评论✍️,您的三连是我持续更新的动力💖


在这里插入图片描述

目录

  • 一、SRGAN网络
    • 1.1 标题
    • 1.2 作者
    • 1.3 发表时间
    • 1.4 摘要
    • 1.5 主要内容
      • 1.5.1 生成对抗网络架构
      • 1.5.2 损失函数
      • 1.5.3 实验结果
    • 1.6 论文总结
  • 二、源码包准备
  • 三、环境准备
    • 3.1 报错:AttributeError: module 'torch' has no attribute 'compile'
    • 3.2 报错:RuntimeError: Windows not yet supported for torch.compile
  • 四、数据集准备
  • 五、训练
    • 5.1 预训练权重下载
    • 5.2 配置文件参数修改
    • 5.3 启动训练
    • 5.4 实时可视化训练过程损失函数走势
    • 5.5 训练结果
  • 六、测试
    • 6.1 测试配置文件修改
    • 6.2 启动测试
  • 七、推理速度
    • 7.1 GPU
    • 7.2 CPU
  • 八、超分效果展示
  • 九、总结

一、SRGAN网络

1.1 标题

“Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”

1.2 作者

Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, Wenzhe Shi

1.3 发表时间

2017年

1.4 摘要

SRGAN通过利用生成对抗网络(GAN)来实现单图像超分辨率重建。传统的方法如基于均方误差(MSE)的优化通常会导致图像平滑且缺乏细节,而SRGAN通过引入感知损失函数(perceptual loss),使得重建的图像不仅在像素级别上更接近高分辨率图像,而且在感知质量上也更加接近真实图像。

1.5 主要内容

1.5.1 生成对抗网络架构

生成器(Generator):采用残差网络(ResNet)结构,能够有效地学习从低分辨率图像到高分辨率图像的映射。
判别器(Discriminator):判别器的任务是区分生成的高分辨率图像和真实的高分辨率图像。通过对抗训练,生成器能够学习生成更加逼真的图像。

1.5.2 损失函数

内容损失(Content Loss):利用VGG网络提取的特征来计算生成图像和真实图像之间的差异。
对抗损失(Adversarial Loss):来自GAN的对抗训练,使得生成器能够骗过判别器,从而生成更加逼真的图像。
感知损失(Perceptual Loss):

感知损失结合内容损失和对抗损失,旨在提高重建图像的感知质量,使其在视觉上更接近真实图像。

1.5.3 实验结果

SRGAN在多种数据集上进行了测试,结果表明,与传统方法(如基于MSE的方法)相比,SRGAN生成的图像在感知质量上有显著提升。在用户研究中,SRGAN生成的图像被评为更接近真实图像。

1.6 论文总结

SRGAN通过生成对抗网络和感知损失函数的结合,显著提升了单图像超分辨率重建的效果。该方法不仅在像素级别上达到了更高的精度,同时在视觉感知上也大幅提升,生成的图像更加逼真,细节更加丰富。

二、源码包准备

本配套教程源码包中已经下载好了测试模型和预训练模型,部分训练集和测试集。源码包获取方法文章末扫码到公众号「视觉研坊」中回复关键字:超分辨率重建SRGAN。获取下载链接。

Pytorch版的官网源码包地址:SRGAN

论文地址:论文

三、环境准备

下面是我自己训练和测试的环境,仅供参考,其它版本也行。

在这里插入图片描述

3.1 报错:AttributeError: module ‘torch’ has no attribute ‘compile’

该报错是因为yTorch 版本不支持 torch.compile 方法。这种方法是在 PyTorch 2.0 版本中引入的,而我使用的Pytorch为1.12版本

在windows电脑上我安装了2.0.1版Pytorch,继续报错。

3.2 报错:RuntimeError: Windows not yet supported for torch.compile

安装了2.0.1版本Pytorch,见下:

在这里插入图片描述

报错见下:

在这里插入图片描述

报错原因:在 PyTorch 2.0 中,torch.compile 目前不支持在 Windows 上运行。

解决办法:网络训练过程不加速,把compile关闭,具体见下:

在这里插入图片描述

关闭后,后续训练和测试,我继续在之前Pytotch1.12.1版本上操作。

解决该问题还有中方式使用 torch.jit.trace 替代torch.compile,后续没调试。

四、数据集准备

直接运行代码会自动下载数据集,某些情况下会下载中断,而且很慢,可以把数据集下载链接拷贝到迅雷中,速度较快,找数据集链接的方法见下,原论文中的数据集下载链接为:https://huggingface.co/datasets/goodfellowliu/SRGAN_ImageNet/resolve/main/SRGAN_ImageNet.zip

在这里插入图片描述

数据集下载好后,先通过split_images.py脚本将各种分辨率的图像裁剪为统一尺寸图片并保存到指定路径中。关于split_images.py脚本的具体用法,以及数据集的样子参考另外一篇博文:高分辨率图像分割成大小均匀图像

测试集的路径见下:

在这里插入图片描述

五、训练

源码中有net网络和gan网络,我主要讲解gan网络的训练和测试,net网络的训练和测试类同。源码中有2倍,4倍,8倍超分,本教程主要讲解4倍超分,其它超分类同。

5.1 预训练权重下载

直接运行脚本,代码也会自动下载预训练模型,如果自动下载出了问题,去下面文件中找到预训练模型下载链接:

在这里插入图片描述

自己下载的模型权重文件,存放到results\pretrained_models路径中:

在这里插入图片描述

5.2 配置文件参数修改

下面是常用参数,其它参数学生根据自己情况自行修改。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

5.3 启动训练

gan网络训练的主脚本为train_gan.py,在此脚本中修改训练用的配置文件路径,见下:

在这里插入图片描述
直接运行train_gan.py脚本开始训练:

在这里插入图片描述

部分训练过程见下:

在这里插入图片描述

5.4 实时可视化训练过程损失函数走势

在终端使用下面命令启动tensorboard实时可视化训练过程损失函数走势:

tensorboard --logdir=samples/logs/SRGAN_x4-SRGAN_ImageNet --port 6007

在这里插入图片描述

具体的可视化走势图见下:

在这里插入图片描述

5.5 训练结果

训练过程的模型权重文件自动保存到results\SRGAN_x4-SRGAN_ImageNet路径下:

在这里插入图片描述

训练过程中每一轮的模型权重文件保存到samples\SRGAN_x4-SRGAN_ImageNet路径下:

在这里插入图片描述

六、测试

6.1 测试配置文件修改

下面参数学者根据自己情况调整修改。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

6.2 启动测试

在这里插入图片描述

将上面required设置为False后,直接运行test.py脚本:

在这里插入图片描述

输出的评价指标如下:

在这里插入图片描述

测试结果保存到result_images\SRGAN_x4-SRGAN_ImageNet-Set14路径下:

在这里插入图片描述

七、推理速度

7.1 GPU

GPU测试环境:Nvidia GeForce RTX 3050。

120*90图像超分4倍 GPU平均推理时间:7.69ms/fps。

在这里插入图片描述

7.2 CPU

12th Gen Intel® Core™ i7-12700H 2.30 GHz。

下面是120*90图像超分4倍,CPU平均推理时间:302.31ms/fps。

在这里插入图片描述

八、超分效果展示

下面左图为bicubic上采样4倍,中间为原图,右图为SRGAN网络超分4倍结果图。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

九、总结

以上就是超分辨重建SRGAN网络训练自己数据集与推理测试详细过程,超分效果与我超分专栏里的其他网络做对比。

感谢您阅读到最后!关注公众号「视觉研坊」,获取干货教程、实战案例、技术解答、行业资讯!

这篇关于超分辨重建——SRGAN网络训练自己数据集与推理测试(详细图文教程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028107

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

字节面试 | 如何测试RocketMQ、RocketMQ?

字节面试:RocketMQ是怎么测试的呢? 答: 首先保证消息的消费正确、设计逆向用例,在验证消息内容为空等情况时的消费正确性; 推送大批量MQ,通过Admin控制台查看MQ消费的情况,是否出现消费假死、TPS是否正常等等问题。(上述都是临场发挥,但是RocketMQ真正的测试点,还真的需要探讨) 01 先了解RocketMQ 作为测试也是要简单了解RocketMQ。简单来说,就是一个分