超分辨重建——SRGAN网络训练自己数据集与推理测试(详细图文教程)

本文主要是介绍超分辨重建——SRGAN网络训练自己数据集与推理测试(详细图文教程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

💪 专业从事且热爱图像处理,图像处理专栏更新如下👇:
📝《图像去噪》
📝《超分辨率重建》
📝《语义分割》
📝《风格迁移》
📝《目标检测》
📝《暗光增强》
📝《模型优化》
📝《模型实战部署》

😊总结不易,多多支持呀🌹感谢您的点赞👍收藏⭐评论✍️,您的三连是我持续更新的动力💖


在这里插入图片描述

目录

  • 一、SRGAN网络
    • 1.1 标题
    • 1.2 作者
    • 1.3 发表时间
    • 1.4 摘要
    • 1.5 主要内容
      • 1.5.1 生成对抗网络架构
      • 1.5.2 损失函数
      • 1.5.3 实验结果
    • 1.6 论文总结
  • 二、源码包准备
  • 三、环境准备
    • 3.1 报错:AttributeError: module 'torch' has no attribute 'compile'
    • 3.2 报错:RuntimeError: Windows not yet supported for torch.compile
  • 四、数据集准备
  • 五、训练
    • 5.1 预训练权重下载
    • 5.2 配置文件参数修改
    • 5.3 启动训练
    • 5.4 实时可视化训练过程损失函数走势
    • 5.5 训练结果
  • 六、测试
    • 6.1 测试配置文件修改
    • 6.2 启动测试
  • 七、推理速度
    • 7.1 GPU
    • 7.2 CPU
  • 八、超分效果展示
  • 九、总结

一、SRGAN网络

1.1 标题

“Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network”

1.2 作者

Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, Wenzhe Shi

1.3 发表时间

2017年

1.4 摘要

SRGAN通过利用生成对抗网络(GAN)来实现单图像超分辨率重建。传统的方法如基于均方误差(MSE)的优化通常会导致图像平滑且缺乏细节,而SRGAN通过引入感知损失函数(perceptual loss),使得重建的图像不仅在像素级别上更接近高分辨率图像,而且在感知质量上也更加接近真实图像。

1.5 主要内容

1.5.1 生成对抗网络架构

生成器(Generator):采用残差网络(ResNet)结构,能够有效地学习从低分辨率图像到高分辨率图像的映射。
判别器(Discriminator):判别器的任务是区分生成的高分辨率图像和真实的高分辨率图像。通过对抗训练,生成器能够学习生成更加逼真的图像。

1.5.2 损失函数

内容损失(Content Loss):利用VGG网络提取的特征来计算生成图像和真实图像之间的差异。
对抗损失(Adversarial Loss):来自GAN的对抗训练,使得生成器能够骗过判别器,从而生成更加逼真的图像。
感知损失(Perceptual Loss):

感知损失结合内容损失和对抗损失,旨在提高重建图像的感知质量,使其在视觉上更接近真实图像。

1.5.3 实验结果

SRGAN在多种数据集上进行了测试,结果表明,与传统方法(如基于MSE的方法)相比,SRGAN生成的图像在感知质量上有显著提升。在用户研究中,SRGAN生成的图像被评为更接近真实图像。

1.6 论文总结

SRGAN通过生成对抗网络和感知损失函数的结合,显著提升了单图像超分辨率重建的效果。该方法不仅在像素级别上达到了更高的精度,同时在视觉感知上也大幅提升,生成的图像更加逼真,细节更加丰富。

二、源码包准备

本配套教程源码包中已经下载好了测试模型和预训练模型,部分训练集和测试集。源码包获取方法文章末扫码到公众号「视觉研坊」中回复关键字:超分辨率重建SRGAN。获取下载链接。

Pytorch版的官网源码包地址:SRGAN

论文地址:论文

三、环境准备

下面是我自己训练和测试的环境,仅供参考,其它版本也行。

在这里插入图片描述

3.1 报错:AttributeError: module ‘torch’ has no attribute ‘compile’

该报错是因为yTorch 版本不支持 torch.compile 方法。这种方法是在 PyTorch 2.0 版本中引入的,而我使用的Pytorch为1.12版本

在windows电脑上我安装了2.0.1版Pytorch,继续报错。

3.2 报错:RuntimeError: Windows not yet supported for torch.compile

安装了2.0.1版本Pytorch,见下:

在这里插入图片描述

报错见下:

在这里插入图片描述

报错原因:在 PyTorch 2.0 中,torch.compile 目前不支持在 Windows 上运行。

解决办法:网络训练过程不加速,把compile关闭,具体见下:

在这里插入图片描述

关闭后,后续训练和测试,我继续在之前Pytotch1.12.1版本上操作。

解决该问题还有中方式使用 torch.jit.trace 替代torch.compile,后续没调试。

四、数据集准备

直接运行代码会自动下载数据集,某些情况下会下载中断,而且很慢,可以把数据集下载链接拷贝到迅雷中,速度较快,找数据集链接的方法见下,原论文中的数据集下载链接为:https://huggingface.co/datasets/goodfellowliu/SRGAN_ImageNet/resolve/main/SRGAN_ImageNet.zip

在这里插入图片描述

数据集下载好后,先通过split_images.py脚本将各种分辨率的图像裁剪为统一尺寸图片并保存到指定路径中。关于split_images.py脚本的具体用法,以及数据集的样子参考另外一篇博文:高分辨率图像分割成大小均匀图像

测试集的路径见下:

在这里插入图片描述

五、训练

源码中有net网络和gan网络,我主要讲解gan网络的训练和测试,net网络的训练和测试类同。源码中有2倍,4倍,8倍超分,本教程主要讲解4倍超分,其它超分类同。

5.1 预训练权重下载

直接运行脚本,代码也会自动下载预训练模型,如果自动下载出了问题,去下面文件中找到预训练模型下载链接:

在这里插入图片描述

自己下载的模型权重文件,存放到results\pretrained_models路径中:

在这里插入图片描述

5.2 配置文件参数修改

下面是常用参数,其它参数学生根据自己情况自行修改。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

5.3 启动训练

gan网络训练的主脚本为train_gan.py,在此脚本中修改训练用的配置文件路径,见下:

在这里插入图片描述
直接运行train_gan.py脚本开始训练:

在这里插入图片描述

部分训练过程见下:

在这里插入图片描述

5.4 实时可视化训练过程损失函数走势

在终端使用下面命令启动tensorboard实时可视化训练过程损失函数走势:

tensorboard --logdir=samples/logs/SRGAN_x4-SRGAN_ImageNet --port 6007

在这里插入图片描述

具体的可视化走势图见下:

在这里插入图片描述

5.5 训练结果

训练过程的模型权重文件自动保存到results\SRGAN_x4-SRGAN_ImageNet路径下:

在这里插入图片描述

训练过程中每一轮的模型权重文件保存到samples\SRGAN_x4-SRGAN_ImageNet路径下:

在这里插入图片描述

六、测试

6.1 测试配置文件修改

下面参数学者根据自己情况调整修改。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

6.2 启动测试

在这里插入图片描述

将上面required设置为False后,直接运行test.py脚本:

在这里插入图片描述

输出的评价指标如下:

在这里插入图片描述

测试结果保存到result_images\SRGAN_x4-SRGAN_ImageNet-Set14路径下:

在这里插入图片描述

七、推理速度

7.1 GPU

GPU测试环境:Nvidia GeForce RTX 3050。

120*90图像超分4倍 GPU平均推理时间:7.69ms/fps。

在这里插入图片描述

7.2 CPU

12th Gen Intel® Core™ i7-12700H 2.30 GHz。

下面是120*90图像超分4倍,CPU平均推理时间:302.31ms/fps。

在这里插入图片描述

八、超分效果展示

下面左图为bicubic上采样4倍,中间为原图,右图为SRGAN网络超分4倍结果图。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

九、总结

以上就是超分辨重建SRGAN网络训练自己数据集与推理测试详细过程,超分效果与我超分专栏里的其他网络做对比。

感谢您阅读到最后!关注公众号「视觉研坊」,获取干货教程、实战案例、技术解答、行业资讯!

这篇关于超分辨重建——SRGAN网络训练自己数据集与推理测试(详细图文教程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028107

相关文章

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

Window Server创建2台服务器的故障转移群集的图文教程

《WindowServer创建2台服务器的故障转移群集的图文教程》本文主要介绍了在WindowsServer系统上创建一个包含两台成员服务器的故障转移群集,文中通过图文示例介绍的非常详细,对大家的... 目录一、 准备条件二、在ServerB安装故障转移群集三、在ServerC安装故障转移群集,操作与Ser

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

windos server2022的配置故障转移服务的图文教程

《windosserver2022的配置故障转移服务的图文教程》本文主要介绍了windosserver2022的配置故障转移服务的图文教程,以确保服务和应用程序的连续性和可用性,文中通过图文介绍的非... 目录准备环境:步骤故障转移群集是 Windows Server 2022 中提供的一种功能,用于在多个

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da