LSUN数据集(Large-Scale Scene Understanding)

2024-06-03 17:52

本文主要是介绍LSUN数据集(Large-Scale Scene Understanding),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LSUN数据集(Large-Scale Scene Understanding)是一个专为计算机视觉研究设计的大规模场景理解数据集。以下是对LSUN数据集的详细介绍:

  1. 创建与目的:
  • LSUN数据集由斯坦福大学计算机视觉实验室创建,旨在为大规模场景理解问题提供数据支持。
  • 该数据集的设计初衷是为了满足深度学习和计算机视觉研究对大规模、多样性图像数据的需求,以训练出更准确、更强大的视觉模型。

  1. 数据规模与类别:
  • LSUN数据集包含了数百万张高分辨率图像,具体数量可能因不同版本或更新而有所变化,但通常包含超过数百万张的图像数据。
  • 这些图像涵盖了多个场景类别,如卧室、客厅、厨房、街道、教室等,使得研究者可以在不同场景下进行图像理解的研究。

  1. 图像特点与标注信息:
  • LSUN数据集中的图像均为高分辨率,能够捕捉到更多的细节信息,有助于模型进行更精确的场景理解。
  • 数据集中的每个图像都有相关的标注信息,如场景类别、图像坐标、对象边界框等。这些标注信息对于训练模型和评估算法性能至关重要。

  1. 数据格式与存储:
  • LSUN数据集中的图像通常以LMDB格式存储,这是一种高效的键值存储数据库格式,适用于大规模图像数据的存储和检索。
  • 数据库文件通常会被压缩,以节省存储空间并方便网络传输。

  1. 获取与使用:
  • LSUN数据集可以通过斯坦福大学计算机视觉实验室的官方网站进行下载。用户需要注册账号并登录后,方可获取下载链接。
  • 下载完成后,用户需要解压缩数据集文件,并根据自己的需求进行数据集的划分和预处理。
  • 使用深度学习框架(如PyTorch或TensorFlow)时,用户可以按照框架的API文档读取训练图像和标签,进行模型的训练和测试。

请注意,由于LSUN数据集规模庞大且涉及高分辨率图像,下载和使用时可能需要较高的硬件配置和网络带宽。此外,用户在使用LSUN数据集时应遵守相关的使用条款和隐私政策。

附上下载代码:

#!/usr/bin/env python
# -*- coding: utf-8 -*-from __future__ import print_function, division
import argparse
import json
from os.path import joinimport subprocess
import urllib2__author__ = 'Fisher Yu'
__email__ = 'fy@cs.princeton.edu'
__license__ = 'MIT'def list_categories(tag):
    url = 'http://lsun.cs.princeton.edu/htbin/list.cgi?tag=' + tag
    f = urllib2.urlopen(url)return json.loads(f.read())def download(out_dir, category, set_name, tag):
    url = 'http://lsun.cs.princeton.edu/htbin/download.cgi?tag={tag}' \'&category={category}&set={set_name}'.format(**locals())if set_name == 'test':
        out_name = 'test_lmdb.zip'else:
        out_name = '{category}_{set_name}_lmdb.zip'.format(**locals())
    out_path = join(out_dir, out_name)
    cmd = ['curl', url, '-o', out_path]print('Downloading', category, set_name, 'set')
    subprocess.call(cmd)def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--tag', type=str, default='latest')
    parser.add_argument('-o', '--out_dir', default='')
    parser.add_argument('-c', '--category', default=None)
    args = parser.parse_args()    categories = list_categories(args.tag)if args.category is None:print('Downloading', len(categories), 'categories')for category in categories:
            download(args.out_dir, category, 'train', args.tag)
            download(args.out_dir, category, 'val', args.tag)
        download(args.out_dir, '', 'test', args.tag)else:if args.category == 'test':
            download(args.out_dir, '', 'test', args.tag)elif args.category not in categories:print('Error:', args.category, "doesn't exist in",
                  args.tag, 'LSUN release')else:
            download(args.out_dir, args.category, 'train', args.tag)
            download(args.out_dir, args.category, 'val', args.tag)if __name__ == '__main__':
    main()

自己也在网上找了一下数据集真的很难也不知道对不对

这篇关于LSUN数据集(Large-Scale Scene Understanding)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027698

相关文章

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.

MySQL使用binlog2sql工具实现在线恢复数据功能

《MySQL使用binlog2sql工具实现在线恢复数据功能》binlog2sql是大众点评开源的一款用于解析MySQLbinlog的工具,根据不同选项,可以得到原始SQL、回滚SQL等,下面我们就来... 目录背景目标步骤准备工作恢复数据结果验证结论背景生产数据库执行 SQL 脚本,一般会经过正规的审批