动态规划之合唱队形问题(最长递增子序列变形)

2024-06-03 14:18

本文主要是介绍动态规划之合唱队形问题(最长递增子序列变形),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述 
N位同学站成一排,音乐老师要请其中的(N-K)位同学出列,使得剩下的K位同学不交换位置就能排成合唱队形。

合唱队形定义:设K位同学从左到右依次编号为1, 2, …, K,他们的身高分别为T1, T2, …, TK,

则他们的身高满足T1 < T2 < … < Ti, Ti > Ti+1 > … > TK (1 <= i <= K)。 
要求:已知所有N位同学的身高,计算最少需要几位同学出列,可以使得剩下的同学排成合唱队形。

输入 
输入的第一行是一个整数N,表示同学的总数。 
第一行有n个整数,用空格分隔,第i个整数Ti是第i位同学的身高(厘米)。

输出 
输出包括一行,这一行只包含一个整数,就是最少需要几位同学出列。

解题思路 
定义n位同学的身高数组为a[n](注意这里数组长度不允许为变量,这里只是为了理解将n写如到[]中)。

总体思路】:假设第i(0<= i <= n - 1)个同学为最高点,分别求出此时i左边的最长递增子序列长度inc1[i],i右边的最长递减子序列长度inc2[i],由于最高点i同时包括在了inc1[i]和inc2[i]之中,因此实际的合唱队形的长度为inc1[i] + inc2[i] - 1。而我们求得的最后结果就是i从1到n - 1中,使得inc1[i] + inc2[i] - 1最大的情况。

具体实现】:现在设i为下标,循环i从0到n-1,求得各种i值对应的inc1[i];循环i从0到n-1,求得各种i值对应的inc2[i]。最后循环i从0到n-1,求得各种i值对应的inc[i] + inc2[i] - 1最大的情况ans,然后n - ans即为出列同学的人数。

当i = 0的时候,最高点0左边只有它自己,因此inc1[0] = 1;当i = n - 1的时候,最高点n - 1右边只有它自己,因此inc2[n - 1] = 1;当i处于0到n - 1之间时的求法也很好理解,在求inc1[i]时,j = (0 ~ i - 1)的inc[j]已经得出来了,所以我们只需要比较在前面的这些序列中加上a[i]时的最长递增序列,即在a[i]大于前面这些序列值的情况下inc[j] + 1最大的情况即为inc[i]。

源代码如下:

#include <iostream>
#include <stdio.h>
using namespace std;int inc1[200],inc2[200],a[200];
//inc1-->longest increase array from head to tail
//inc2-->longest increase array from tail to headint main()
{int n;while(scanf("%d",&n)!=EOF){int ans=0,i,j;for(i = 0; i < n; i++)  //输入n个人的身高scanf("%d",&a[i]);//inc1[i]是存储以i为最高点时左边的递增子序列长度inc1[0]=1;for(i = 1; i < n; i++){inc1[i] = 1;for(j = 0; j < i; j++)if(a[i] > a[j] && inc1[j] + 1 > inc1[i])inc1[i] = inc1[j]+1;}//inc2[i]是存储以i为最高点时左边的递减子序列长度inc2[n - 1] = 1;for(i = n - 2; i >= 0; i--){inc2[i] = 1;for(j = n - 1; j > i; j--)if(a[j] < a[i] && inc2[j] + 1 > inc2[i])inc2[i] = inc2[j] + 1;}for(i = 0; i<=n; i++)if(inc1[i] + inc2[i]-1 > ans) ans = inc1[i] + inc2[i] - 1;printf("%d\n",n-ans);}return 0;
}

这篇关于动态规划之合唱队形问题(最长递增子序列变形)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027219

相关文章

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

csu(背包的变形题)

题目链接 这是一道背包的变形题目。好题呀 题意:给n个怪物,m个人,每个人的魔法消耗和魔法伤害不同,求打死所有怪物所需的魔法 #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>//#include<u>#include<map

hdu3389(阶梯博弈变形)

题意:有n个盒子,编号1----n,每个盒子内有一些小球(可以为空),选择一个盒子A,将A中的若干个球移到B中,满足条件B  < A;(A+B)%2=1;(A+B)%3=0 这是阶梯博弈的变形。 先介绍下阶梯博弈: 在一个阶梯有若干层,每层上放着一些小球,两名选手轮流选择一层上的若干(不能为0)小球从上往下移动,最后一次移动的胜出(最终状态小球都在地面上) 如上图所示,小球数目依次为

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

poj3261(可重复k次的最长子串)

题意:可重复k次的最长子串 解题思路:求所有区间[x,x+k-1]中的最小值的最大值。求sa时间复杂度Nlog(N),求最值时间复杂度N*N,但实际复杂度很低。题目数据也比较水,不然估计过不了。 代码入下: #include<iostream>#include<algorithm>#include<stdio.h>#include<math.h>#include<cstring

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k