【TensorFlow深度学习】卷积层变种与深度残差网络原理

2024-06-03 08:44

本文主要是介绍【TensorFlow深度学习】卷积层变种与深度残差网络原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

卷积层变种与深度残差网络原理

      • 卷积层变种与深度残差网络:探究卷积神经网络的进化与优化策略
        • 卷积层:深度学习的基石
        • 变种与卷积层变种
        • 深差网络:深度网络的优化策略
        • 实战代码示例:ResNet模块实现
        • 结语

卷积层变种与深度残差网络:探究卷积神经网络的进化与优化策略

在深度学习的浩瀚海中,卷积神经网络(CNN)犹如一座灯塔,而深度残差网络(ResNet)则是在这座塔尖的明珠。本文将深入浅出积层变种,解析其在CNN中的应用,继而探索ResNet的原理与优化策略,如何解决过拟合,构建更健壮丽的深度模型。

卷积层:深度学习的基石

卷积层,是CNN的基石,核心。它通过卷积运算,滤波器(kernel)在输入特征图上滑动,提取局部特征。每个滤波器输出一个特征图,多个滤波器构成特征图。这种局部连接方式不仅减少了参数量,还保留了数据的空间信息,提升了模型的表达能力。

变种与卷积层变种

随着深度的增加,卷积层的变种成为必需。这包括大小、步长、填充、组积核大小、激活函数等。例如,大小影响特征图的尺寸,小化减少计算;填充可以保持输出尺寸;组积在深度方向上分组卷积,减少参数量。

深差网络:深度网络的优化策略

ResNet,何凯明等在2015年提出,通过在层间添加直接连接(Skip Connection)解决过拟合问题。ResBlock,输入与输出间相加,使网络具备回退能力,即使深也能学习浅层的性能。ResNet的提出,不仅深度模型训练稳定,泛化能力也显著增强,ImageNet竞赛上取得了佳绩。

实战代码示例:ResNet模块实现
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, BatchNormalization, Activation, Add, MaxPooling2D, Dense, Flattendef residual_block(inputs, filters, strides=1):x = Conv2D(filters, 3, strides=strides, padding='same')(inputs)x = BatchNormalization()(x)x = Activation('relu')(')(x)x = Conv2D(filters, 3, padding='same')(x)x = BatchNormalization()(x)x = Add()([inputs, x])x = Activation('relu')(')(x)return xdef resnet():inputs = Input(shape=(28, 28, 3)x = Conv2D(64, 7, strides=2, padding='same')(inputs)x = BatchNormalization()(x)x = Activation('relu')(')(x)x = MaxPooling(3, strides=2)(x)x = residual_block(64, strides=1)x = residual(64, strides=2)x = residual(16, strides=2)x = residual(16, strides=2)x = AveragePooling()(x)x = Flatten()(x)x = Dense(10, activation='softmax')(x)return Model(inputs=inputs, outputs=x)model = resnet()
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
结语

积层与ResNet,前者是深度学习演进化的关键基石,后者是优化策略的创新。积层变种让CNN适应多样的数据,深度,而ResNet通过Skip Connection解决过拟合,使模型深。理解这两者,你将能构建更健壮、泛化的深度模型,深度学习之旅更进一步。通过代码实践,不仅掌握理论,更感受深度学习的魅力。

这篇关于【TensorFlow深度学习】卷积层变种与深度残差网络原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1026501

相关文章

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

C#中async await异步关键字用法和异步的底层原理全解析

《C#中asyncawait异步关键字用法和异步的底层原理全解析》:本文主要介绍C#中asyncawait异步关键字用法和异步的底层原理全解析,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录C#异步编程一、异步编程基础二、异步方法的工作原理三、代码示例四、编译后的底层实现五、总结C#异步编程

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2