CV技术指南 | 中科院又一创举 SecViT | 多功能视觉 Backbone 网络,图像分类、目标检测、实例分割和语义分割都性能起飞!

本文主要是介绍CV技术指南 | 中科院又一创举 SecViT | 多功能视觉 Backbone 网络,图像分类、目标检测、实例分割和语义分割都性能起飞!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文来源公众号“CV技术指南”,仅用于学术分享,侵权删,干货满满。

原文链接:中科院又一创举 SecViT | 多功能视觉 Backbone 网络,图像分类、目标检测、实例分割和语义分割都性能起飞!

前言 

视觉 Transformer (ViT)因其卓越的关系建模能力而受到关注。然而,其全局注意力机制的二次复杂度带来了相当大的计算负担。常见的解决方法是空间地分组 Token 以进行自注意力,减少计算需求。然而,这种策略忽略了 Token 中的语义信息,可能将语义相关的 Token 分散到不同的组中,从而损害了用于建模 Token 间依赖的自注意力的有效性。基于这些洞察,作者引入了一种快速且均衡的聚类方法,名为语义均衡聚类(SEC)。SEC以一种高效、直接的方式根据 Token 的全局语义相关性对 Token 进行聚类。与需要多次迭代的传统聚类方法不同,作者的方法在一次传递中完成 Token 聚类。此外,SEC调节每个簇中的 Token 数量,确保在当前计算平台上进行有效的并行处理,而无需进一步优化。

来源:AI视界引擎

仅用于学术分享,若侵权请联系删除

代码将可在https://github.com/qhfan/SecViT获取。

1 Introduction

自从Vision Transformer(ViT)[13]问世以来,由于其强大的建模能力,已经引起了研究界的广泛关注。然而,自注意力机制的二次复杂度导致了巨大的计算开销,从而限制了ViT的实际应用。已经设计出多种策略来减轻这种计算负担,其中最普遍的做法涉及 Token 分组,从而限制每个 Token 的注意力范围。

具体来说,Swin-Transformer [36]将 Token 划分为多个小窗口,限制每个窗口内的 Token 注意力。CSWin-Transformer [12]采用十字形分组,赋予每个 Token 一个全局感受野。MaxViT [48]结合了窗口和网格注意力,使窗口内的 Token 能够关注到其他窗口的对应 Token 。然而,这些仅依赖于空间定位的方法忽视了 Token 语义,可能限制了自注意力建模语义依赖的能力。为了减轻这个问题,DGT [35]采用k-means聚类进行 Query 分组,考虑 Token 的语义信息以增强特征学习。然而,k-means聚类的迭代性质以及每个簇中 Token 数量可能不均,这影响了并行注意力操作的效率。

考虑到这些因素,一个理想的 Token 划分方案应该高效地分离 Token ,融入语义信息,并高效利用计算资源(如GPU)。对此,作者提出了一种简单、快速且公平的聚类方法,名为Semantic Equitable Clustering(SEC)。SEC根据 Token 与全局语义信息的关联度来分割 Token 。具体来说,作者使用全局池化生成一个包含全局语义信息的全局 Token 。然后计算这个全局 Token 与所有其他 Token 之间的相似性,反映全局语义相关性。在获得相似性矩阵后,将 Token (除全局 Token 外)按相似性分数排序,并将相似分数的 Token 分组到簇中,确保簇间 Token 分布均匀。如图1所示,SEC全面考虑了 Token 语义,并在单次迭代中完成聚类过程,与多次迭代的k-means不同。由此产生的包含相等数量 Token 的簇可以被GPU高效地并行处理。

图1:窗口划分、动态k-means分组与语义公平聚类的比较。作者的语义公平聚类在保持高效聚类的同时融入了图像语义,无需像k-means那样的迭代过程。此外,它使得 Token 的均等划分成为可能,促进了无需额外CUDA优化的GPU高效处理。

图2:在ImageNet-1K上,resent SOTA模型的Top-1准确度与FLOPs对比。SecViT在所有设置中均超越了所有同类模型。

2 相关工作

视觉Transformer(ViT)[13]被认为是一个强大的视觉架构,因其出色的视觉建模能力而受到认可。许多研究改进了Vision Transformer,包括提高其训练效率和降低计算成本。DeiT使用了蒸馏损失,并将大量的数据增强方法融入到ViT的训练过程中,这增加了模型的数据利用效率,使其能够在数据较少的情况下训练出有效的ViT。由PVT 表示的分层结构通过下采样键和值(KV)减少了全局注意力中的标记数量,从而将全局注意力的计算成本保持在可接受的范围内。除了使用下采样减少标记数量外,一些方法还直接根据标记的重要性进行剪枝,保留重要标记同时丢弃或合并不重要标记[15; 42]。这减少了标记的数量,进而降低了模型的计算成本。另一种极具代表性的方法是将所有标记分组,使得每个标记只能关注其所在组内的标记。这种方法也显著降低了自注意力的计算成本。

基于分组的视觉Transformer。大多数基于分组的注意力机制根据空间结构进行分组[36; 12; 48; 11; 35]。具体来说,Swin-Transformer [36] 根据它们的空间位置将所有标记划分为大小相等的窗口,其中每个标记只能关注其自身窗口内的标记。这显著降低了模型的计算成本。相比之下,CSWin [12] 将标记划分为交叉结构,这也降低了模型的计算成本。除了沿空间维度将标记划分为小窗口外,DaViT [11] 还沿通道维度将通道划分为多个组。与仅考虑位置信息进行分组的方法不同,DGT [35] 通过使用k-means聚类来对 Query 进行分组,同时考虑了语义信息。

3 Method

3.1 Overall Architecture

3.2 Semantic Equitable Clustering

正如先前所提及,语义公平聚类的设计目标有三:

  1. 在聚类过程中充分考虑不同标记中包含的语义信息。

  2. 与需要多次迭代的k-means等其他聚类方法不同,语义公平聚类可以在一步完成聚类。

  3. 确保每个簇中标记数量相等,便于在GPU上进行并行处理。在以下段落中,作者将详细描述作者的语义公平聚类如何实现这三个目标。整个过程如图3(c)所示。

与语义相关的单一聚类中心。k-means之所以相对复杂,有两个原因。首先,它具有多个聚类中心,每个标记需要计算其与每个聚类中心的距离以确定其簇成员身份。其次,K-means中每个聚类中心的确定并不精确,需要多次迭代才能准确建立簇中心。

基于以上步骤,作者完成了以最小的排序成本捕捉图像中语义信息的聚类过程。此外,与K-means相比,作者已经实现了每个簇的均等划分。聚类完成后,作者在每个簇内的标记上应用标准的Self-Attention(SECA),从而完成标记间信息的交互。

在完成SECA之后,为了进一步增强模型捕捉局部信息的能力,作者采用了一个局部上下文增强模块来建模局部信息,其中LCE [62; 12] 是一个简单的深度卷积:

4 Experiments

作者在包括ImageNet-1k [10]上的图像分类、COCO [33]上的目标检测和实例分割以及ADE20K [61]上的语义分割在内的广泛视觉任务上进行了实验。所有模型都可以使用8个A100 80G GPU进行训练。

4.1 ImageNet Classification

作者从头开始在ImageNet-1k [10]上训练作者的模型。为了公平比较,作者遵循DeiT [47]中的训练策略,仅以分类损失作为监督。对于SecViT-T、SecViT-S、SecViT-B和SecViT-L,增加随机深度[23]的最大速率分别设置为0.1、0.15、0.4和0.5。

与SOTA的比较。作者将SecViT与众多最先进的模型进行比较,结果展示在表1中。SecViT在所有尺度上一致优于先前模型。值得注意的是,SecViT-S仅用1500万个参数和2.5G FLOPs就达到了84.2%的Top1准确率。对于更大的模型,SecViT-L在9600万个参数和18.1G FLOPs的情况下达到了**85.6%**的Top1准确率。

与 Baseline 的严格比较。作者选择了两个 Baseline :一个通用目的的 Backbone 网络,Swin-Transformer [36],和一个以效率为导向的 Backbone 网络,FasterViT [19],以与作者的SecViT进行比较。在比较模型(SEC-Swin和SEC-FasterViT)中,作者仅将原始Swin-Transformer和FasterViT中的注意力机制替换为基于语义平等聚类的自注意力,而没有引入其他任何模块(如CPE、卷积Stem等)。如表2所示,仅替换注意力机制就能在性能和效率方面带来显著优势。具体来说,SEC-Swin在Tiny和小型模型尺寸上实现了比Swin**2.0%**的改进甚至超越。同时,SEC-FasterViT在参数更少的情况下达到了比FasterViT更高的准确率。

4.2 Object Detection and Instance Segmentation

与CSWin-Transformer的比较。如表6所示,基于SecViT-T架构,作者将SECA替换为来自CSwin-Transformer的CSWSA。这导致分类性能显著下降(下降了1.2%)。这充分证明了作者提出的标记聚类方法的有效性。

Lce。LCE是一个简单的深度卷积模块,用于进一步增强模型建模局部信息的能力。作者对LCE进行了消融实验,并发现它对模型性能有一定的提升作用。结果在表6中展示。具体来说,它将模型的分类准确率提高了**+0.2**。

Cpe。在CPVT [7]中提出的CPE是一种即插即用、高度可移植的位置编码方法,被许多方法广泛采用以向模型提供位置信息。它由仅包含3x3深度卷积的残差块组成。表6中关于CPE的消融结果表明,它为模型提供了一定的性能提升(大约在分类准确率上增加了**+0.2**)。

Conv Stem。Conv Stem在模型的早期阶段使用,以提取更精细的局部特征。如表6中的数据所示,在分类任务中,Conv Stem在一定程度上增强了模型的性能。具体来说,Conv Stem将分类准确率提高了**+0.3**。

表7:聚类数量的影响。

聚类数量的影响。在表7中,作者验证了在模型的最初三个阶段选择不同聚类数量对性能的影响。对于SecViT-S,作者分别为前三个阶段选择了32、8和2个簇。这个配置达到了84.2%的分类准确率。随着作者在每个阶段逐渐增加簇的数量,模型的总体计算量减少,准确率略有下降。这证明了语义聚类在聚类数量方面的鲁棒性。

4.3 Visualization of Semantic Clustering

为了进一步了解作者的语义公平聚类是如何工作的,作者可视化了一些样本的聚类结果。如图4所示,作者选择了预训练SecViT-B的第一、第二和第三阶段来观察不同标记的聚类结果。在图中,颜色相同的 Patch 属于同一个簇。很明显,在第一和第二阶段,作者的模型倾向于捕捉详细的信息,而在第三阶段,它倾向于捕捉语义信息。

5 Conclusion

作者提出了一种简单直接的针对视觉 Transformer (Vision Transformers)的聚类方法——语义公平聚类(Semantic Equitable Clustering,简称SEC)。

该方法通过计算每个标记与全局标记之间的相似性,然后相应地进行排序,将每个标记分配给一个簇。作者的聚类方法考虑了标记中包含的语义信息,在一步内完成聚类,并确保每个簇中标记数量相等,这有助于在现代GPU上进行高效的并行处理。基于语义公平聚类,作者设计了SecViT,一个多功能的视觉 Backbone 网络,在包括图像分类、目标检测、实例分割和语义分割在内的各种视觉任务上取得了令人印象深刻的结果。

5.1 Appendix A Architecture Details

对于SEC-Swin,作者遵循Swin-Transformer [36]的设计原则,不使用额外的结构,如CPE或卷积干细胞。

对于SEC-FasterViT,作者遵循FasterViT [19]的设计原则。作者在模型的前两个阶段使用卷积以实现快速推理速度,在后两个阶段使用基于语义均衡聚类的自注意力(SECA)。

对于所有模型,作者将前三个阶段的簇数量分别设置为32、8和2。

5.2 Appendix B Experimental Settings

ImageNet图像分类。作者采用了DeiT [47]中提出的训练策略,唯一的监督是交叉熵损失。作者的所有模型都是从零开始训练300个周期,输入分辨率为224x224。使用了AdamW优化器,并配合余弦衰减学习率调度器和5个周期的线性预热。批量大小设置为1024。作者应用了与DeiT [47]中相同的适配和正则化方法,包括RandAugment [9](randn9-mstd0.5-inc1)、Mixup [60](prob = 0.8)、CutMix [59](prob = 1.0)、随机擦除(prob = 0.25)和指数移动平均(EMA)[41]。增加随机深度[23]的最大速率设置为SecViT-T/S/B/L分别为0.1/0.15/0.4/0.5。

COCO目标检测和实例分割。作者在MMDetection [6]的基础上应用了RetinaNet [32]、Mask-RCNN [21]和级联Mask R-CNN [3]作为检测框架。作者的所有模型都采用"1x "(12个训练周期)和"3x  +MS"(36个训练周期,配合多尺度训练)设置进行训练。对于"1x "设置,图像被调整到较短的边为800像素,而较长的边在1333像素以内。对于"3 x +MS",使用多尺度训练策略,随机调整图像较短的边在480到800像素之间。对于这两个框架,作者使用初始学习率为1e-4的AdamW。对于RetinaNet,作者将权重衰减设置为1e-4。而对于Mask-RCNN和级联Mask R-CNN,作者将其设置为5e-2。

ADE20K语义分割。基于MMSegmentation [8],作者实现了UperNet [55]和SemanticFPN [27]来评估作者的模型在语义分割上的性能。对于UperNet,作者遵循Swin-Transformer [36]的先前设置,以512x512的输入大小训练模型160k次迭代。对于SemanticFPN,作者也使用512x512的输入分辨率,但训练模型80k次迭代。局限性和未来工作

尽管作者提出的语义均衡聚类在聚类标记和许多视觉任务上表现出显著的效率,但仍然存在一些需要在未来工作中解决的局限性。首先,计算限制阻止了作者实验更大模型和如ImageNet-21k这样的大型数据集。探索语义均衡聚类在大规模数据集和更大模型上的潜力可能会为其可扩展性和效率提供进一步见解。

未来,作者将努力验证作者的SecViT在大数据集和更大模型上的性能。

5.3 Appendix D Broader Impact Statement

语义均衡聚类(SEC)的发展有望通过为视觉 Transformer 中的标记提供一种高效且与语义相关的分组方法,影响计算机视觉领域。通过聚类标记,SEC减少了计算负载,提高了视觉模型的效率,这可能导致更广泛的应用。

所提出的SecViT是一个通用的视觉 Backbone 网络,可应用于不同的视觉任务,例如图像分类、目标检测、实例分割和语义分割。它没有直接的社会负面影响。作为通用 Backbone 网络的SecViT可能存在的恶意使用超出了作者研究的讨论范围。

5.4 Appendix E Code

作者提供了基于自注意力机制的语义均衡聚类(Semantic Equitable Clustering)的代码。

2 def __init__(self, embed_dim, num_heads, num_clusters): super().__init__()self.num_clusters = num_clusters self.embed_dim = embed_dim self.num_heads = num_heads self.head_dim = embed_dim // num_heads self.scaling = self.head_dim ** -0.5 self.qkv = nn.Conv2d(embed_dim, embed_dim*3, 1, bias=True) self.out_proj = nn.Conv2d(embed_dim, embed_dim, 1, bias=True)
3 def sort_sim(self, q: torch.Tensor, k: torch.Tensor):''' q: (b n h w)d k: (b n h w)d '''cls_token = q.mean(2, keepdim=True) # (b 1 d)cls_token = F.normalize(cls_token, dim=-1)k = F.normalize(k, dim=-1)cos_sim = cls_token @ k.transpose(-1, -2) # (b 1 (h w))sort_indices = torch.argsort(cos_sim, dim=-1)return sort_indices.squeeze(2) # (b (h w))
4 def sort_tensor(self, indices: torch.Tensor, target: torch.Tensor):'''indices: (b 1)target: (b 1 d)'''sorted_tensor = torch.gather(target, dim=-2, index=indices.unsqueeze(-1).expand_as(target))return sorted_tensor
5 def restore_tensor(self, indices: torch.Tensor, target: torch.Tensor):'''indices: (b m 1)target: (b m d)'''restored_tensor = torch.gather(target, dim=-2, index=indices.sort(dim=-1).indices.unsqueeze(-1).expand_as(target))return restored_tensor
6 def forward(self, x: torch.Tensor):'''x: (b c h w)'''bsz, _, h, w = x.size()l = h * wassert l % self.num_clusters == 0qkv = self.qkv(x) # (b 3*c h w)q, k, v = rearrange(qkv, 'b(m n d) h w -> m b n (h w) d', m=3, n=self.num_heads) # q,k,v -> b n (h w) dk = k * self.scalingif self.num_clusters > 1:indices = self.sort_sim(k, k) # (b n (h w))q = self.sort_tensor(indices, q) # (b n (h w) d)k = self.sort_tensor(indices, k) # (b n (h w) d)v = self.sort_tensor(indices, v) # (b n (h w) d)q_1 = rearrange(q, 'b n (c l) d -> b n c l d', c=self.num_clusters)k_l = rearrange(k, 'b n (c l) d -> b n c l d', c=self.num_clusters)v = rearrange(v, 'b n (c l) d -> b n c l d', c=self.num_clusters)attn = torch.softmax(q_l @ k_l.transpose(-1, -2), dim=-1) # (b n c l l)v = attn @ v # (b n c l d)v = rearrange(v, 'b n c l d -> b n (c l) d')v = self.restore_tensor(indices, v) # (b n (h w) d)v = rearrange(v, 'b n (h w) d -> b n (d) h w', h=h, w=w)else:attn = torch.softmax(q @ k.transpose(-1, -2), dim=-1) # (b n (h w))v = attn @ v # (b n (h w) d)v = rearrange(v, 'b n (h w) d -> b (n d) h w', h=h, w=w)return self.out_proj(v)

6 参考

[1].Semantic Equitable Clustering: A Simple, Fast and Effective Strategy for Vision Transformer.

THE END !

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

这篇关于CV技术指南 | 中科院又一创举 SecViT | 多功能视觉 Backbone 网络,图像分类、目标检测、实例分割和语义分割都性能起飞!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1026208

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

黑神话,XSKY 星飞全闪单卷性能突破310万

当下,云计算仍然是企业主要的基础架构,随着关键业务的逐步虚拟化和云化,对于块存储的性能要求也日益提高。企业对于低延迟、高稳定性的存储解决方案的需求日益迫切。为了满足这些日益增长的 IO 密集型应用场景,众多云服务提供商正在不断推陈出新,推出具有更低时延和更高 IOPS 性能的云硬盘产品。 8 月 22 日 2024 DTCC 大会上(第十五届中国数据库技术大会),XSKY星辰天合正式公布了基于星