政安晨:【Keras机器学习示例演绎】(五十一)—— 利用广义网络、深度网络和交叉网络进行结构化数据学习

本文主要是介绍政安晨:【Keras机器学习示例演绎】(五十一)—— 利用广义网络、深度网络和交叉网络进行结构化数据学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

政安晨的个人主页:政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏: TensorFlow与Keras机器学习实战

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本文目标:使用 "宽深 "和 "深交 "网络进行结构化数据分类。

目录

简介

数据集

设置

准备数据

定义数据集元数据

实验设置

创建模型输入

特征编码

实验 1:基线模型

实验 2:广度和深度模型

实验 3:深度和交叉模型

结论


 

简介

本例演示如何使用两种建模技术进行结构化数据分类:

广度模型和深度模型
深度模型和交叉模型


请注意,本示例应在 TensorFlow 2.5 或更高版本上运行。 

数据集


本示例使用 UCI 机器学习资料库中的 Covertype 数据集。任务是根据地图变量预测森林覆盖类型。该数据集包含 506 011 个实例和 12 个输入特征:10 个数字特征和 2 个分类特征。每个实例被分为 7 类中的 1 类。

设置

import os# Only the TensorFlow backend supports string inputs.
os.environ["KERAS_BACKEND"] = "tensorflow"import math
import numpy as np
import pandas as pd
from tensorflow import data as tf_data
import keras
from keras import layers

准备数据


首先,让我们将 UCI 机器学习资源库中的数据集加载到 Pandas DataFrame 中:

data_url = ("https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.data.gz"
)
raw_data = pd.read_csv(data_url, header=None)
print(f"Dataset shape: {raw_data.shape}")
raw_data.head()
Dataset shape: (581012, 55)
0123456789...45464748495051525354
0259651325805102212321486279...0000000005
12590562212-63902202351516225...0000000005
2280413992686531802342381356121...0000000002
327851551824211830902382381226211...0000000002
42595452153-13912202341506172...0000000005

5 行 × 55 列

数据集中的两个分类特征是二进制编码的。我们将把这个数据集表示法转换为典型的表示法,即每个分类特征表示为一个整数值。

soil_type_values = [f"soil_type_{idx+1}" for idx in range(40)]
wilderness_area_values = [f"area_type_{idx+1}" for idx in range(4)]soil_type = raw_data.loc[:, 14:53].apply(lambda x: soil_type_values[0::1][x.to_numpy().nonzero()[0][0]], axis=1
)
wilderness_area = raw_data.loc[:, 10:13].apply(lambda x: wilderness_area_values[0::1][x.to_numpy().nonzero()[0][0]], axis=1
)CSV_HEADER = ["Elevation","Aspect","Slope","Horizontal_Distance_To_Hydrology","Vertical_Distance_To_Hydrology","Horizontal_Distance_To_Roadways","Hillshade_9am","Hillshade_Noon","Hillshade_3pm","Horizontal_Distance_To_Fire_Points","Wilderness_Area","Soil_Type","Cover_Type",
]data = pd.concat([raw_data.loc[:, 0:9], wilderness_area, soil_type, raw_data.loc[:, 54]],axis=1,ignore_index=True,
)
data.columns = CSV_HEADER# Convert the target label indices into a range from 0 to 6 (there are 7 labels in total).
data["Cover_Type"] = data["Cover_Type"] - 1print(f"Dataset shape: {data.shape}")
data.head().T
Dataset shape: (581012, 13)
01234
Elevation25962590280427852595
Aspect515613915545
Slope329182
Horizontal_Distance_To_Hydrology258212268242153
Vertical_Distance_To_Hydrology0-665118-1
Horizontal_Distance_To_Roadways51039031803090391
Hillshade_9am221220234238220
Hillshade_Noon232235238238234
Hillshade_3pm148151135122150
Horizontal_Distance_To_Fire_Points62796225612162116172
Wilderness_Areaarea_type_1area_type_1area_type_1area_type_1area_type_1
Soil_Typesoil_type_29soil_type_29soil_type_12soil_type_30soil_type_29
Cover_Type44114

DataFrame 的形状显示每个样本有 13 列(12 列表示特征,1 列表示目标标签)。

我们把数据分成训练集(85%)和测试集(15%)。

train_splits = []
test_splits = []for _, group_data in data.groupby("Cover_Type"):random_selection = np.random.rand(len(group_data.index)) <= 0.85train_splits.append(group_data[random_selection])test_splits.append(group_data[~random_selection])train_data = pd.concat(train_splits).sample(frac=1).reset_index(drop=True)
test_data = pd.concat(test_splits).sample(frac=1).reset_index(drop=True)print(f"Train split size: {len(train_data.index)}")
print(f"Test split size: {len(test_data.index)}")
Train split size: 493323
Test split size: 87689

然后,将训练数据和测试数据分别存储在不同的 CSV 文件中。

train_data_file = "train_data.csv"
test_data_file = "test_data.csv"train_data.to_csv(train_data_file, index=False)
test_data.to_csv(test_data_file, index=False)

定义数据集元数据


这里,我们定义了数据集的元数据,这些元数据将有助于将数据读取和解析为输入特征,并根据输入特征的类型对其进行编码。

TARGET_FEATURE_NAME = "Cover_Type"TARGET_FEATURE_LABELS = ["0", "1", "2", "3", "4", "5", "6"]NUMERIC_FEATURE_NAMES = ["Aspect","Elevation","Hillshade_3pm","Hillshade_9am","Hillshade_Noon","Horizontal_Distance_To_Fire_Points","Horizontal_Distance_To_Hydrology","Horizontal_Distance_To_Roadways","Slope","Vertical_Distance_To_Hydrology",
]CATEGORICAL_FEATURES_WITH_VOCABULARY = {"Soil_Type": list(data["Soil_Type"].unique()),"Wilderness_Area": list(data["Wilderness_Area"].unique()),
}CATEGORICAL_FEATURE_NAMES = list(CATEGORICAL_FEATURES_WITH_VOCABULARY.keys())FEATURE_NAMES = NUMERIC_FEATURE_NAMES + CATEGORICAL_FEATURE_NAMESCOLUMN_DEFAULTS = [[0] if feature_name in NUMERIC_FEATURE_NAMES + [TARGET_FEATURE_NAME] else ["NA"]for feature_name in CSV_HEADER
]NUM_CLASSES = len(TARGET_FEATURE_LABELS)

实验设置


接下来,让我们定义一个输入函数,用于读取和解析文件,然后将特征和标签转换为 atf.data.Dataset 以进行训练或评估。

def get_dataset_from_csv(csv_file_path, batch_size, shuffle=False):dataset = tf_data.experimental.make_csv_dataset(csv_file_path,batch_size=batch_size,column_names=CSV_HEADER,column_defaults=COLUMN_DEFAULTS,label_name=TARGET_FEATURE_NAME,num_epochs=1,header=True,shuffle=shuffle,)return dataset.cache()

在此,我们将配置参数,并执行给定模型的训练和评估实验程序。

learning_rate = 0.001
dropout_rate = 0.1
batch_size = 265
num_epochs = 50hidden_units = [32, 32]def run_experiment(model):model.compile(optimizer=keras.optimizers.Adam(learning_rate=learning_rate),loss=keras.losses.SparseCategoricalCrossentropy(),metrics=[keras.metrics.SparseCategoricalAccuracy()],)train_dataset = get_dataset_from_csv(train_data_file, batch_size, shuffle=True)test_dataset = get_dataset_from_csv(test_data_file, batch_size)print("Start training the model...")history = model.fit(train_dataset, epochs=num_epochs)print("Model training finished")_, accuracy = model.evaluate(test_dataset, verbose=0)print(f"Test accuracy: {round(accuracy * 100, 2)}%")

创建模型输入


现在,将模型的输入定义为一个字典,其中键是特征名称,值是具有相应特征形状和数据类型的 keras.layers.Input 张量。

def create_model_inputs():inputs = {}for feature_name in FEATURE_NAMES:if feature_name in NUMERIC_FEATURE_NAMES:inputs[feature_name] = layers.Input(name=feature_name, shape=(), dtype="float32")else:inputs[feature_name] = layers.Input(name=feature_name, shape=(), dtype="string")return inputs

特征编码


我们为输入特征创建了两种表示:稀疏表示和密集表示: 1. 在稀疏表示中,分类特征使用类别编码层(CategoryEncoding layer)进行单次编码。这种表示法可以帮助模型记忆特定的特征值,从而做出某些预测。2.在密集表示法中,分类特征使用嵌入层(Embedding layer)进行低维嵌入编码。这种表示法有助于模型很好地概括未见过的特征组合。

def encode_inputs(inputs, use_embedding=False):encoded_features = []for feature_name in inputs:if feature_name in CATEGORICAL_FEATURE_NAMES:vocabulary = CATEGORICAL_FEATURES_WITH_VOCABULARY[feature_name]# Create a lookup to convert string values to an integer indices.# Since we are not using a mask token nor expecting any out of vocabulary# (oov) token, we set mask_token to None and  num_oov_indices to 0.lookup = layers.StringLookup(vocabulary=vocabulary,mask_token=None,num_oov_indices=0,output_mode="int" if use_embedding else "binary",)if use_embedding:# Convert the string input values into integer indices.encoded_feature = lookup(inputs[feature_name])embedding_dims = int(math.sqrt(len(vocabulary)))# Create an embedding layer with the specified dimensions.embedding = layers.Embedding(input_dim=len(vocabulary), output_dim=embedding_dims)# Convert the index values to embedding representations.encoded_feature = embedding(encoded_feature)else:# Convert the string input values into a one hot encoding.encoded_feature = lookup(keras.ops.expand_dims(inputs[feature_name], -1))else:# Use the numerical features as-is.encoded_feature = keras.ops.expand_dims(inputs[feature_name], -1)encoded_features.append(encoded_feature)all_features = layers.concatenate(encoded_features)return all_features

实验 1:基线模型


在第一个实验中,让我们创建一个多层前馈网络,对分类特征进行单击编码。

def create_baseline_model():inputs = create_model_inputs()features = encode_inputs(inputs)for units in hidden_units:features = layers.Dense(units)(features)features = layers.BatchNormalization()(features)features = layers.ReLU()(features)features = layers.Dropout(dropout_rate)(features)outputs = layers.Dense(units=NUM_CLASSES, activation="softmax")(features)model = keras.Model(inputs=inputs, outputs=outputs)return modelbaseline_model = create_baseline_model()
keras.utils.plot_model(baseline_model, show_shapes=True, rankdir="LR")
/Users/fchollet/Library/Python/3.10/lib/python/site-packages/numpy/core/numeric.py:2468: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparisonreturn bool(asarray(a1 == a2).all())

让我们运行它:

run_experiment(baseline_model)
Start training the model...
Epoch 1/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 6s 3ms/step - loss: 1.0713 - sparse_categorical_accuracy: 0.5634
Epoch 2/50179/1862 ━[37m━━━━━━━━━━━━━━━━━━━  1s 848us/step - loss: 0.7473 - sparse_categorical_accuracy: 0.6840/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/contextlib.py:153: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset.self.gen.throw(typ, value, traceback)1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 904us/step - loss: 0.7386 - sparse_categorical_accuracy: 0.6866
Epoch 3/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 909us/step - loss: 0.7135 - sparse_categorical_accuracy: 0.6958
Epoch 4/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 878us/step - loss: 0.6975 - sparse_categorical_accuracy: 0.7051
Epoch 5/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 941us/step - loss: 0.6876 - sparse_categorical_accuracy: 0.7089
Epoch 6/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 936us/step - loss: 0.6848 - sparse_categorical_accuracy: 0.7106
Epoch 7/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 934us/step - loss: 0.7165 - sparse_categorical_accuracy: 0.6969
Epoch 8/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 924us/step - loss: 0.6979 - sparse_categorical_accuracy: 0.7053
Epoch 9/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 967us/step - loss: 0.6913 - sparse_categorical_accuracy: 0.7088
Epoch 10/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 975us/step - loss: 0.6807 - sparse_categorical_accuracy: 0.7124
Epoch 11/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 987us/step - loss: 0.6829 - sparse_categorical_accuracy: 0.7110
Epoch 12/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 917us/step - loss: 0.6823 - sparse_categorical_accuracy: 0.7109
Epoch 13/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 879us/step - loss: 0.6658 - sparse_categorical_accuracy: 0.7175
Epoch 14/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 948us/step - loss: 0.6677 - sparse_categorical_accuracy: 0.7170
Epoch 15/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 866us/step - loss: 0.6695 - sparse_categorical_accuracy: 0.7130
Epoch 16/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 860us/step - loss: 0.6847 - sparse_categorical_accuracy: 0.7074
Epoch 17/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 853us/step - loss: 0.6660 - sparse_categorical_accuracy: 0.7174
Epoch 18/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 855us/step - loss: 0.6620 - sparse_categorical_accuracy: 0.7184
Epoch 19/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 900us/step - loss: 0.6642 - sparse_categorical_accuracy: 0.7163
Epoch 20/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 969us/step - loss: 0.6614 - sparse_categorical_accuracy: 0.7167
Epoch 21/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 988us/step - loss: 0.6560 - sparse_categorical_accuracy: 0.7199
Epoch 22/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 969us/step - loss: 0.6559 - sparse_categorical_accuracy: 0.7201
Epoch 23/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 868us/step - loss: 0.6514 - sparse_categorical_accuracy: 0.7217
Epoch 24/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 925us/step - loss: 0.6509 - sparse_categorical_accuracy: 0.7222
Epoch 25/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 879us/step - loss: 0.6464 - sparse_categorical_accuracy: 0.7233
Epoch 26/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 898us/step - loss: 0.6442 - sparse_categorical_accuracy: 0.7237
Epoch 27/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 842us/step - loss: 0.6476 - sparse_categorical_accuracy: 0.7210
Epoch 28/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 815us/step - loss: 0.6427 - sparse_categorical_accuracy: 0.7247
Epoch 29/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 837us/step - loss: 0.6414 - sparse_categorical_accuracy: 0.7244
Epoch 30/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 865us/step - loss: 0.6408 - sparse_categorical_accuracy: 0.7256
Epoch 31/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 845us/step - loss: 0.6378 - sparse_categorical_accuracy: 0.7269
Epoch 32/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 842us/step - loss: 0.6432 - sparse_categorical_accuracy: 0.7235
Epoch 33/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 905us/step - loss: 0.6482 - sparse_categorical_accuracy: 0.7226
Epoch 34/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.6586 - sparse_categorical_accuracy: 0.7191
Epoch 35/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 958us/step - loss: 0.6511 - sparse_categorical_accuracy: 0.7215
Epoch 36/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 910us/step - loss: 0.6571 - sparse_categorical_accuracy: 0.7217
Epoch 37/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 897us/step - loss: 0.6451 - sparse_categorical_accuracy: 0.7253
Epoch 38/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 846us/step - loss: 0.6455 - sparse_categorical_accuracy: 0.7254
Epoch 39/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 907us/step - loss: 0.6722 - sparse_categorical_accuracy: 0.7131
Epoch 40/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1000us/step - loss: 0.6393 - sparse_categorical_accuracy: 0.7282
Epoch 41/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 872us/step - loss: 0.6804 - sparse_categorical_accuracy: 0.7078
Epoch 42/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 884us/step - loss: 0.6657 - sparse_categorical_accuracy: 0.7135
Epoch 43/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 960us/step - loss: 0.6557 - sparse_categorical_accuracy: 0.7180
Epoch 44/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 870us/step - loss: 0.6671 - sparse_categorical_accuracy: 0.7115
Epoch 45/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 871us/step - loss: 0.6730 - sparse_categorical_accuracy: 0.7069
Epoch 46/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 875us/step - loss: 0.6669 - sparse_categorical_accuracy: 0.7105
Epoch 47/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 847us/step - loss: 0.6634 - sparse_categorical_accuracy: 0.7129
Epoch 48/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 846us/step - loss: 0.6625 - sparse_categorical_accuracy: 0.7137
Epoch 49/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 824us/step - loss: 0.6596 - sparse_categorical_accuracy: 0.7146
Epoch 50/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 833us/step - loss: 0.6714 - sparse_categorical_accuracy: 0.7106
Model training finished
Test accuracy: 69.5%

基线线性模型的测试准确率约为 76%。

实验 2:广度和深度模型

在第二个实验中,我们创建了一个广度和深度模型。广度模型是线性模型,深度模型是多层前馈网络。

在广度模型中使用输入特征的稀疏表示,在深度模型中使用输入特征的密集表示。

请注意,每个输入特征都会对模型的两个部分产生不同的表示。

def create_wide_and_deep_model():inputs = create_model_inputs()wide = encode_inputs(inputs)wide = layers.BatchNormalization()(wide)deep = encode_inputs(inputs, use_embedding=True)for units in hidden_units:deep = layers.Dense(units)(deep)deep = layers.BatchNormalization()(deep)deep = layers.ReLU()(deep)deep = layers.Dropout(dropout_rate)(deep)merged = layers.concatenate([wide, deep])outputs = layers.Dense(units=NUM_CLASSES, activation="softmax")(merged)model = keras.Model(inputs=inputs, outputs=outputs)return modelwide_and_deep_model = create_wide_and_deep_model()
keras.utils.plot_model(wide_and_deep_model, show_shapes=True, rankdir="LR")
/Users/fchollet/Library/Python/3.10/lib/python/site-packages/numpy/core/numeric.py:2468: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparisonreturn bool(asarray(a1 == a2).all())

让我们运行它:

run_experiment(wide_and_deep_model)
Start training the model...
Epoch 1/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 5s 2ms/step - loss: 0.8979 - sparse_categorical_accuracy: 0.6386
Epoch 2/50128/1862 ━[37m━━━━━━━━━━━━━━━━━━━  2s 1ms/step - loss: 0.6317 - sparse_categorical_accuracy: 0.7302/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/contextlib.py:153: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset.self.gen.throw(typ, value, traceback)1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.6290 - sparse_categorical_accuracy: 0.7295
Epoch 3/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.6130 - sparse_categorical_accuracy: 0.7350
Epoch 4/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.6029 - sparse_categorical_accuracy: 0.7397
Epoch 5/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 3s 1ms/step - loss: 0.6010 - sparse_categorical_accuracy: 0.7397
Epoch 6/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5924 - sparse_categorical_accuracy: 0.7445
Epoch 7/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5917 - sparse_categorical_accuracy: 0.7442
Epoch 8/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5945 - sparse_categorical_accuracy: 0.7438
Epoch 9/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5933 - sparse_categorical_accuracy: 0.7443
Epoch 10/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5862 - sparse_categorical_accuracy: 0.7481
Epoch 11/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5809 - sparse_categorical_accuracy: 0.7507
Epoch 12/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5777 - sparse_categorical_accuracy: 0.7519
Epoch 13/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5736 - sparse_categorical_accuracy: 0.7534
Epoch 14/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5716 - sparse_categorical_accuracy: 0.7545
Epoch 15/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5736 - sparse_categorical_accuracy: 0.7537
Epoch 16/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5712 - sparse_categorical_accuracy: 0.7559
Epoch 17/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5683 - sparse_categorical_accuracy: 0.7564
Epoch 18/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5666 - sparse_categorical_accuracy: 0.7569
Epoch 19/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5652 - sparse_categorical_accuracy: 0.7575
Epoch 20/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5634 - sparse_categorical_accuracy: 0.7583
Epoch 21/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5677 - sparse_categorical_accuracy: 0.7563
Epoch 22/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5651 - sparse_categorical_accuracy: 0.7578
Epoch 23/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5628 - sparse_categorical_accuracy: 0.7586
Epoch 24/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5619 - sparse_categorical_accuracy: 0.7593
Epoch 25/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5603 - sparse_categorical_accuracy: 0.7589
Epoch 26/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5644 - sparse_categorical_accuracy: 0.7585
Epoch 27/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5592 - sparse_categorical_accuracy: 0.7604
Epoch 28/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5571 - sparse_categorical_accuracy: 0.7616
Epoch 29/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5556 - sparse_categorical_accuracy: 0.7629
Epoch 30/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5538 - sparse_categorical_accuracy: 0.7640
Epoch 31/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5535 - sparse_categorical_accuracy: 0.7635
Epoch 32/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5521 - sparse_categorical_accuracy: 0.7645
Epoch 33/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5505 - sparse_categorical_accuracy: 0.7648
Epoch 34/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5494 - sparse_categorical_accuracy: 0.7657
Epoch 35/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5496 - sparse_categorical_accuracy: 0.7660
Epoch 36/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5488 - sparse_categorical_accuracy: 0.7673
Epoch 37/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5471 - sparse_categorical_accuracy: 0.7668
Epoch 38/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5474 - sparse_categorical_accuracy: 0.7673
Epoch 39/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5457 - sparse_categorical_accuracy: 0.7674
Epoch 40/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5452 - sparse_categorical_accuracy: 0.7689
Epoch 41/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5448 - sparse_categorical_accuracy: 0.7679
Epoch 42/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 3s 1ms/step - loss: 0.5442 - sparse_categorical_accuracy: 0.7692
Epoch 43/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5436 - sparse_categorical_accuracy: 0.7701
Epoch 44/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5419 - sparse_categorical_accuracy: 0.7706
Epoch 45/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5432 - sparse_categorical_accuracy: 0.7691
Epoch 46/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5406 - sparse_categorical_accuracy: 0.7708
Epoch 47/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5412 - sparse_categorical_accuracy: 0.7701
Epoch 48/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5400 - sparse_categorical_accuracy: 0.7701
Epoch 49/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5416 - sparse_categorical_accuracy: 0.7699
Epoch 50/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5403 - sparse_categorical_accuracy: 0.7701
Model training finished
Test accuracy: 79.04%

广度和深度模型的测试准确率约为 79%。

实验 3:深度和交叉模型

在第三个实验中,我们创建了一个深度和交叉模型。该模型的深度部分与前一个实验中创建的深度部分相同。交叉部分的主要理念是以一种高效的方式应用显式特征交叉,交叉特征的程度随层深度的增加而增加。

def create_deep_and_cross_model():inputs = create_model_inputs()x0 = encode_inputs(inputs, use_embedding=True)cross = x0for _ in hidden_units:units = cross.shape[-1]x = layers.Dense(units)(cross)cross = x0 * x + crosscross = layers.BatchNormalization()(cross)deep = x0for units in hidden_units:deep = layers.Dense(units)(deep)deep = layers.BatchNormalization()(deep)deep = layers.ReLU()(deep)deep = layers.Dropout(dropout_rate)(deep)merged = layers.concatenate([cross, deep])outputs = layers.Dense(units=NUM_CLASSES, activation="softmax")(merged)model = keras.Model(inputs=inputs, outputs=outputs)return modeldeep_and_cross_model = create_deep_and_cross_model()
keras.utils.plot_model(deep_and_cross_model, show_shapes=True, rankdir="LR")
/Users/fchollet/Library/Python/3.10/lib/python/site-packages/numpy/core/numeric.py:2468: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparisonreturn bool(asarray(a1 == a2).all())

让我们运行它:

run_experiment(deep_and_cross_model)
Start training the model...
Epoch 1/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 5s 2ms/step - loss: 0.9221 - sparse_categorical_accuracy: 0.6235
Epoch 2/50116/1862 ━[37m━━━━━━━━━━━━━━━━━━━  2s 1ms/step - loss: 0.6388 - sparse_categorical_accuracy: 0.7257/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/contextlib.py:153: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset.self.gen.throw(typ, value, traceback)1862/1862 ━━━━━━━━━━━━━━━━━━━━ 3s 2ms/step - loss: 0.6271 - sparse_categorical_accuracy: 0.7316
Epoch 3/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 3s 1ms/step - loss: 0.6023 - sparse_categorical_accuracy: 0.7403
Epoch 4/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5896 - sparse_categorical_accuracy: 0.7453
Epoch 5/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5899 - sparse_categorical_accuracy: 0.7438
Epoch 6/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5960 - sparse_categorical_accuracy: 0.7421
Epoch 7/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5813 - sparse_categorical_accuracy: 0.7481
Epoch 8/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5748 - sparse_categorical_accuracy: 0.7500
Epoch 9/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5743 - sparse_categorical_accuracy: 0.7502
Epoch 10/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5739 - sparse_categorical_accuracy: 0.7506
Epoch 11/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5673 - sparse_categorical_accuracy: 0.7540
Epoch 12/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5649 - sparse_categorical_accuracy: 0.7561
Epoch 13/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 3s 1ms/step - loss: 0.5651 - sparse_categorical_accuracy: 0.7548
Epoch 14/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5618 - sparse_categorical_accuracy: 0.7563
Epoch 15/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5599 - sparse_categorical_accuracy: 0.7571
Epoch 16/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5568 - sparse_categorical_accuracy: 0.7585
Epoch 17/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5556 - sparse_categorical_accuracy: 0.7592
Epoch 18/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5544 - sparse_categorical_accuracy: 0.7595
Epoch 19/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5533 - sparse_categorical_accuracy: 0.7603
Epoch 20/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5532 - sparse_categorical_accuracy: 0.7597
Epoch 21/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5531 - sparse_categorical_accuracy: 0.7602
Epoch 22/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5516 - sparse_categorical_accuracy: 0.7608
Epoch 23/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 3s 1ms/step - loss: 0.5503 - sparse_categorical_accuracy: 0.7611
Epoch 24/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5492 - sparse_categorical_accuracy: 0.7619
Epoch 25/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5482 - sparse_categorical_accuracy: 0.7623
Epoch 26/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5464 - sparse_categorical_accuracy: 0.7635
Epoch 27/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5483 - sparse_categorical_accuracy: 0.7625
Epoch 28/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 3s 1ms/step - loss: 0.5654 - sparse_categorical_accuracy: 0.7555
Epoch 29/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5545 - sparse_categorical_accuracy: 0.7593
Epoch 30/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5512 - sparse_categorical_accuracy: 0.7603
Epoch 31/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5493 - sparse_categorical_accuracy: 0.7616
Epoch 32/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5485 - sparse_categorical_accuracy: 0.7627
Epoch 33/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5593 - sparse_categorical_accuracy: 0.7588
Epoch 34/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5536 - sparse_categorical_accuracy: 0.7608
Epoch 35/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5537 - sparse_categorical_accuracy: 0.7612
Epoch 36/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5518 - sparse_categorical_accuracy: 0.7621
Epoch 37/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5502 - sparse_categorical_accuracy: 0.7618
Epoch 38/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5537 - sparse_categorical_accuracy: 0.7597
Epoch 39/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5526 - sparse_categorical_accuracy: 0.7609
Epoch 40/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5508 - sparse_categorical_accuracy: 0.7608
Epoch 41/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5495 - sparse_categorical_accuracy: 0.7613
Epoch 42/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 3s 1ms/step - loss: 0.5478 - sparse_categorical_accuracy: 0.7625
Epoch 43/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5471 - sparse_categorical_accuracy: 0.7629
Epoch 44/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5462 - sparse_categorical_accuracy: 0.7640
Epoch 45/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5458 - sparse_categorical_accuracy: 0.7633
Epoch 46/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5466 - sparse_categorical_accuracy: 0.7635
Epoch 47/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5492 - sparse_categorical_accuracy: 0.7633
Epoch 48/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5474 - sparse_categorical_accuracy: 0.7639
Epoch 49/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5452 - sparse_categorical_accuracy: 0.7645
Epoch 50/501862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5446 - sparse_categorical_accuracy: 0.7663
Model training finished
Test accuracy: 77.98%

深度和交叉模型的测试准确率约为 81%。

结论


您可以使用 Keras 预处理层轻松处理具有不同编码机制的分类特征,包括单次编码和特征嵌入。此外,针对不同的数据集属性,不同的模型架构(如广义网络、深度网络和交叉网络)具有不同的优势。您可以探索独立使用它们,或者将它们结合起来,以获得最适合您数据集的结果。


这篇关于政安晨:【Keras机器学习示例演绎】(五十一)—— 利用广义网络、深度网络和交叉网络进行结构化数据学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1025889

相关文章

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Redis延迟队列的实现示例

《Redis延迟队列的实现示例》Redis延迟队列是一种使用Redis实现的消息队列,本文主要介绍了Redis延迟队列的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录一、什么是 Redis 延迟队列二、实现原理三、Java 代码示例四、注意事项五、使用 Redi

使用zabbix进行监控网络设备流量

《使用zabbix进行监控网络设备流量》这篇文章主要为大家详细介绍了如何使用zabbix进行监控网络设备流量,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装zabbix配置ENSP环境配置zabbix实行监控交换机测试一台liunx服务器,这里使用的为Ubuntu22.04(