kaggle竞赛实战7——其他方案之lightgbm

2024-06-02 23:20

本文主要是介绍kaggle竞赛实战7——其他方案之lightgbm,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文换种方案,用wrapper+lightgbm建模+TPE调优

接下来是特征筛选过程,此处先择使用Wrapper方法进行特征筛选,通过带入全部数据训练一个LightGBM模型,然后通过观察特征重要性,选取最重要的300个特征。当然,为了进一步确保挑选过程的有效性,此处我们考虑使用交叉验证的方法来进行多轮验证。实际多轮验证特征重要性的过程也较为清晰,我们只需要记录每一轮特征重要性,并在最后进行简单汇总即可。我们可以通过定义如下函数完成该过程:

          # Part 1.划分特征名称,删除ID列和标签列 
          print('feature_select_wrapper...') 
          label = 'target' 
          features = train.columns.tolist() 
          features.remove('card_id') 
          features.remove('target')


          # Step 2.配置lgb参数 
          # 模型参数 
          params_initial = { 
              'num_leaves': 31, 
              'learning_rate': 0.1, 
              'boosting': 'gbdt', 
              'min_child_samples': 20, 
              'bagging_seed': 2020, 
              'bagging_fraction': 0.7, 
              'bagging_freq': 1, 
              'feature_fraction': 0.7, 
              'max_depth': -1, 
              'metric': 'rmse', 
              'reg_alpha': 0, 
              'reg_lambda': 1, 
              'objective': 'regression' 
          } 


          # 控制参数 
          # 提前验证迭代效果或停止 
          ESR = 30 
          # 迭代次数 
          NBR = 10000 
          # 打印间隔 
          VBE = 50 

import lightgbm as lgb

 # 实例化评估器 
          kf = KFold(n_splits=5, random_state=2020, shuffle=True) 
          # 创建空容器 
          fse = pd.Series(0, index=features) 

 for train_part_index, eval_index in kf.split(train[features], train[label]): 
              # 封装训练数据集 
              train_part = lgb.Dataset(train[features].loc[train_part_index], 
                                       train[label].loc[train_part_index]) 
              # 封装验证数据集 
              eval = lgb.Dataset(train[features].loc[eval_index], 
                                 train[label].loc[eval_index]) 
              # 在训练集上进行训练,并同时进行验证 
              bst = lgb.train(params_initial, train_part, num_boost_round=NBR, 
                              valid_sets=[train_part, eval], 
                              valid_names=['train', 'valid'], 
                              early_stopping_rounds=ESR, verbose_eval=VBE) 
              # 输出特征重要性计算结果,并进行累加 
              fse += pd.Series(bst.feature_importance(), features) 
           
          # Part 4.选择最重要的300个特征 
          feature_select = ['card_id'] + fse.sort_values(ascending=False).index.tolist()[:300] 
          print('done') 
          return train[feature_select + ['target']], test[feature_select]  

最后调用该函数

 train_LGBM, test_LGBM = feature_select_wrapper(train, test) 

part4:使用lightgbm训练,先做超参数搜索

首先设置一部分参数不变,防止后续它被设置为默认值

 def params_append(params): 

         params['feature_pre_filter'] = False 
          params['objective'] = 'regression' 
          params['metric'] = 'rmse' 
          params['bagging_seed'] = 2020 
          return params  

接着进行模型训练

          # Part 1.划分特征名称,删除ID列和标签列 
          label = 'target' 
          features = train.columns.tolist() 
          features.remove('card_id') 
          features.remove('target') 
           
          # Part 2.封装训练数据 
          train_data = lgb.Dataset(train[features], train[label]) 


          # Part 3.内部函数,输入模型超参数输出损失值的函数 
          def hyperopt_objective(params): 

              # 创建参数集 
              params = params_append(params) 
              print(params) 

               # 借助lgb的cv过程,输出某一组超参数下损失值的最小值 

             res = lgb.cv(params, train_data, 1000, 
                           nfold=2, 
                           stratified=False, 
                           shuffle=True, 
                           metrics='rmse', 
                           early_stopping_rounds=20, 
                           verbose_eval=False, 
                           show_stdv=False, 
                           seed=2020)#cv是lgb自带的交叉熵过程

             return min(res['rmse-mean'])

#接下来开始搜索参数

params_space = { 
              'learning_rate': hp.uniform('learning_rate', 1e-2, 5e-1), 
              'bagging_fraction': hp.uniform('bagging_fraction', 0.5, 1), 
              'feature_fraction': hp.uniform('feature_fraction', 0.5, 1), 
              'num_leaves': hp.choice('num_leaves', list(range(10, 300, 10))), 
              'reg_alpha': hp.randint('reg_alpha', 0, 10), 
              'reg_lambda': hp.uniform('reg_lambda', 0, 10), 
              'bagging_freq': hp.randint('bagging_freq', 1, 10), 
              'min_child_samples': hp.choice('min_child_samples', list(range(1, 30, 5))) 
          } #uniform表示是连续空间

          # Part 5.TPE超参数搜索 

params_best = fmin( 
              hyperopt_objective, #目标函数
              space=params_space, 
              algo=tpe.suggest, #搜索算法
              max_evals=30,
              rstate=RandomState(2020)) 

带入训练数据测试函数性能

  best_clf = param_hyperopt(train_LGBM)  

得到左优参数 best_clf

 {'bagging_fraction': 0.9022336069269954, 
          'bagging_freq': 2, 
          'feature_fraction': 0.9373662317255621, 
          'learning_rate': 0.014947332175194025, 
          'min_child_samples': 5, 
          'num_leaves': 7, 
          'reg_alpha': 2, 
          'reg_lambda': 3.5907566887206896}  

part5 正式进入训练部分

 # 数据准备过程 
      label = 'target' 
      features = train_LGBM.columns.tolist() 
      features.remove('card_id') 
      features.remove('target') 
       
      # 数据封装 
      lgb_train = lgb.Dataset(train_LGBM[features], train_LGBM[label])  

    # 在全部数据集上训练模型 
      bst = lgb.train(best_clf, lgb_train)  

   # 在测试集上完成预测 
      bst.predict(train_LGBM[features])  

    # 简单查看训练集RMSE 
      np.sqrt(mean_squared_error(train_LGBM[label], bst.predict(train_LGBM[features])))  

#  接下来,对测试集进行预测,并将结果写入本地文件  

 test_LGBM['target'] = bst.predict(test_LGBM[features]) 
      test_LGBM[['card_id', 'target']].to_csv(\  result/submission_LGBM.csv\  , index=False)  

提交到kaggle发现结果不如随机森林,决定再用交叉验证进行均值集成

def train_predict(train, test, params): 

         label = 'target' 
          features = train.columns.tolist() 
          features.remove('card_id') 
          features.remove('target') 


          # Part 2.再次申明固定参数与控制迭代参数 
          params = params_append(params) 
          ESR = 30 
          NBR = 10000 
          VBE = 50 
           
          # Part 3.创建结果存储容器 
          # 测试集预测结果存储器,后保存至本地文件 
          prediction_test = 0 
          # 验证集的模型表现,作为展示用 
          cv_score = [] 
          # 验证集的预测结果存储器,后保存至本地文件 
          prediction_train = pd.Series() 
           
          # Part 3.交叉验证 
          kf = KFold(n_splits=5, random_state=2020, shuffle=True) 
          for train_part_index, eval_index in kf.split(train[features], train[label]): 
              # 训练数据封装 
              train_part = lgb.Dataset(train[features].loc[train_part_index], 
                                       train[label].loc[train_part_index]) 
              # 测试数据封装 
              eval = lgb.Dataset(train[features].loc[eval_index], 
                                 train[label].loc[eval_index]) 
              # 依据验证集训练模型 
              bst = lgb.train(params, train_part, num_boost_round=NBR, 
                              valid_sets=[train_part, eval], 
                              valid_names=['train', 'valid'], 
                              early_stopping_rounds=ESR, verbose_eval=VBE) 
              # 测试集预测结果并纳入prediction_test容器 
              prediction_test += bst.predict(test[features]) 
              # 验证集预测结果并纳入prediction_train容器 
              prediction_train = prediction_train.append(pd.Series(bst.predict(train[features].loc[eval_index]), 
                                                                   index=eval_index)) 
              # 验证集预测结果 
              eval_pre = bst.predict(train[features].loc[eval_index]) 
              # 计算验证集上得分 
              score = np.sqrt(mean_squared_error(train[label].loc[eval_index].values, eval_pre)) 
              # 纳入cv_score容器 
              cv_score.append(score) 
               
          # Part 4.打印/输出结果 
          # 打印验证集得分与平均得分 
          print(cv_score, sum(cv_score) / 5) 
          # 将验证集上预测结果写入本地文件 
          pd.Series(prediction_train.sort_index().values).to_csv(\  preprocess/train_lightgbm.csv\  , index=False) 
          # 将测试集上预测结果写入本地文件 
          pd.Series(prediction_test / 5).to_csv(\  preprocess/test_lightgbm.csv\  , index=False) 
          # 测试集平均得分作为模型最终预测结果 
          test['target'] = prediction_test / 5 
          # 将测试集预测结果写成竞赛要求格式并保存至本地 
          test[['card_id', 'target']].to_csv(\  result/submission_lightgbm.csv\  , index=False) 
          return  ]

最后去算得分

 train_LGBM, test_LGBM = feature_select_wrapper(train, test) 
      best_clf = param_hyperopt(train_LGBM) 
      train_predict(train_LGBM, test_LGBM, best_clf)  

发现分比之前都有提升。

这篇关于kaggle竞赛实战7——其他方案之lightgbm的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1025384

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

Android平台播放RTSP流的几种方案探究(VLC VS ExoPlayer VS SmartPlayer)

技术背景 好多开发者需要遴选Android平台RTSP直播播放器的时候,不知道如何选的好,本文针对常用的方案,做个大概的说明: 1. 使用VLC for Android VLC Media Player(VLC多媒体播放器),最初命名为VideoLAN客户端,是VideoLAN品牌产品,是VideoLAN计划的多媒体播放器。它支持众多音频与视频解码器及文件格式,并支持DVD影音光盘,VCD影

滚雪球学Java(87):Java事务处理:JDBC的ACID属性与实战技巧!真有两下子!

咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE啦,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯,别被干货淹没了哦~ 🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,助你一臂之力,带你早日登顶🚀,欢迎大家关注&&收藏!持续更新中,up!up!up!! 环境说明:Windows 10

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.

如何选择SDR无线图传方案

在开源软件定义无线电(SDR)领域,有几个项目提供了无线图传的解决方案。以下是一些开源SDR无线图传方案: 1. **OpenHD**:这是一个远程高清数字图像传输的开源解决方案,它使用SDR技术来实现高清视频的无线传输。OpenHD项目提供了一个完整的工具链,包括发射器和接收器的硬件设计以及相应的软件。 2. **USRP(Universal Software Radio Periphera

每日一题|牛客竞赛|四舍五入|字符串+贪心+模拟

每日一题|四舍五入 四舍五入 心有猛虎,细嗅蔷薇。你好朋友,这里是锅巴的C\C++学习笔记,常言道,不积跬步无以至千里,希望有朝一日我们积累的滴水可以击穿顽石。 四舍五入 题目: 牛牛发明了一种新的四舍五入应用于整数,对个位四舍五入,规则如下 12345->12350 12399->12400 输入描述: 输入一个整数n(0<=n<=109 ) 输出描述: 输出一个整数