kaggle竞赛实战7——其他方案之lightgbm

2024-06-02 23:20

本文主要是介绍kaggle竞赛实战7——其他方案之lightgbm,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文换种方案,用wrapper+lightgbm建模+TPE调优

接下来是特征筛选过程,此处先择使用Wrapper方法进行特征筛选,通过带入全部数据训练一个LightGBM模型,然后通过观察特征重要性,选取最重要的300个特征。当然,为了进一步确保挑选过程的有效性,此处我们考虑使用交叉验证的方法来进行多轮验证。实际多轮验证特征重要性的过程也较为清晰,我们只需要记录每一轮特征重要性,并在最后进行简单汇总即可。我们可以通过定义如下函数完成该过程:

          # Part 1.划分特征名称,删除ID列和标签列 
          print('feature_select_wrapper...') 
          label = 'target' 
          features = train.columns.tolist() 
          features.remove('card_id') 
          features.remove('target')


          # Step 2.配置lgb参数 
          # 模型参数 
          params_initial = { 
              'num_leaves': 31, 
              'learning_rate': 0.1, 
              'boosting': 'gbdt', 
              'min_child_samples': 20, 
              'bagging_seed': 2020, 
              'bagging_fraction': 0.7, 
              'bagging_freq': 1, 
              'feature_fraction': 0.7, 
              'max_depth': -1, 
              'metric': 'rmse', 
              'reg_alpha': 0, 
              'reg_lambda': 1, 
              'objective': 'regression' 
          } 


          # 控制参数 
          # 提前验证迭代效果或停止 
          ESR = 30 
          # 迭代次数 
          NBR = 10000 
          # 打印间隔 
          VBE = 50 

import lightgbm as lgb

 # 实例化评估器 
          kf = KFold(n_splits=5, random_state=2020, shuffle=True) 
          # 创建空容器 
          fse = pd.Series(0, index=features) 

 for train_part_index, eval_index in kf.split(train[features], train[label]): 
              # 封装训练数据集 
              train_part = lgb.Dataset(train[features].loc[train_part_index], 
                                       train[label].loc[train_part_index]) 
              # 封装验证数据集 
              eval = lgb.Dataset(train[features].loc[eval_index], 
                                 train[label].loc[eval_index]) 
              # 在训练集上进行训练,并同时进行验证 
              bst = lgb.train(params_initial, train_part, num_boost_round=NBR, 
                              valid_sets=[train_part, eval], 
                              valid_names=['train', 'valid'], 
                              early_stopping_rounds=ESR, verbose_eval=VBE) 
              # 输出特征重要性计算结果,并进行累加 
              fse += pd.Series(bst.feature_importance(), features) 
           
          # Part 4.选择最重要的300个特征 
          feature_select = ['card_id'] + fse.sort_values(ascending=False).index.tolist()[:300] 
          print('done') 
          return train[feature_select + ['target']], test[feature_select]  

最后调用该函数

 train_LGBM, test_LGBM = feature_select_wrapper(train, test) 

part4:使用lightgbm训练,先做超参数搜索

首先设置一部分参数不变,防止后续它被设置为默认值

 def params_append(params): 

         params['feature_pre_filter'] = False 
          params['objective'] = 'regression' 
          params['metric'] = 'rmse' 
          params['bagging_seed'] = 2020 
          return params  

接着进行模型训练

          # Part 1.划分特征名称,删除ID列和标签列 
          label = 'target' 
          features = train.columns.tolist() 
          features.remove('card_id') 
          features.remove('target') 
           
          # Part 2.封装训练数据 
          train_data = lgb.Dataset(train[features], train[label]) 


          # Part 3.内部函数,输入模型超参数输出损失值的函数 
          def hyperopt_objective(params): 

              # 创建参数集 
              params = params_append(params) 
              print(params) 

               # 借助lgb的cv过程,输出某一组超参数下损失值的最小值 

             res = lgb.cv(params, train_data, 1000, 
                           nfold=2, 
                           stratified=False, 
                           shuffle=True, 
                           metrics='rmse', 
                           early_stopping_rounds=20, 
                           verbose_eval=False, 
                           show_stdv=False, 
                           seed=2020)#cv是lgb自带的交叉熵过程

             return min(res['rmse-mean'])

#接下来开始搜索参数

params_space = { 
              'learning_rate': hp.uniform('learning_rate', 1e-2, 5e-1), 
              'bagging_fraction': hp.uniform('bagging_fraction', 0.5, 1), 
              'feature_fraction': hp.uniform('feature_fraction', 0.5, 1), 
              'num_leaves': hp.choice('num_leaves', list(range(10, 300, 10))), 
              'reg_alpha': hp.randint('reg_alpha', 0, 10), 
              'reg_lambda': hp.uniform('reg_lambda', 0, 10), 
              'bagging_freq': hp.randint('bagging_freq', 1, 10), 
              'min_child_samples': hp.choice('min_child_samples', list(range(1, 30, 5))) 
          } #uniform表示是连续空间

          # Part 5.TPE超参数搜索 

params_best = fmin( 
              hyperopt_objective, #目标函数
              space=params_space, 
              algo=tpe.suggest, #搜索算法
              max_evals=30,
              rstate=RandomState(2020)) 

带入训练数据测试函数性能

  best_clf = param_hyperopt(train_LGBM)  

得到左优参数 best_clf

 {'bagging_fraction': 0.9022336069269954, 
          'bagging_freq': 2, 
          'feature_fraction': 0.9373662317255621, 
          'learning_rate': 0.014947332175194025, 
          'min_child_samples': 5, 
          'num_leaves': 7, 
          'reg_alpha': 2, 
          'reg_lambda': 3.5907566887206896}  

part5 正式进入训练部分

 # 数据准备过程 
      label = 'target' 
      features = train_LGBM.columns.tolist() 
      features.remove('card_id') 
      features.remove('target') 
       
      # 数据封装 
      lgb_train = lgb.Dataset(train_LGBM[features], train_LGBM[label])  

    # 在全部数据集上训练模型 
      bst = lgb.train(best_clf, lgb_train)  

   # 在测试集上完成预测 
      bst.predict(train_LGBM[features])  

    # 简单查看训练集RMSE 
      np.sqrt(mean_squared_error(train_LGBM[label], bst.predict(train_LGBM[features])))  

#  接下来,对测试集进行预测,并将结果写入本地文件  

 test_LGBM['target'] = bst.predict(test_LGBM[features]) 
      test_LGBM[['card_id', 'target']].to_csv(\  result/submission_LGBM.csv\  , index=False)  

提交到kaggle发现结果不如随机森林,决定再用交叉验证进行均值集成

def train_predict(train, test, params): 

         label = 'target' 
          features = train.columns.tolist() 
          features.remove('card_id') 
          features.remove('target') 


          # Part 2.再次申明固定参数与控制迭代参数 
          params = params_append(params) 
          ESR = 30 
          NBR = 10000 
          VBE = 50 
           
          # Part 3.创建结果存储容器 
          # 测试集预测结果存储器,后保存至本地文件 
          prediction_test = 0 
          # 验证集的模型表现,作为展示用 
          cv_score = [] 
          # 验证集的预测结果存储器,后保存至本地文件 
          prediction_train = pd.Series() 
           
          # Part 3.交叉验证 
          kf = KFold(n_splits=5, random_state=2020, shuffle=True) 
          for train_part_index, eval_index in kf.split(train[features], train[label]): 
              # 训练数据封装 
              train_part = lgb.Dataset(train[features].loc[train_part_index], 
                                       train[label].loc[train_part_index]) 
              # 测试数据封装 
              eval = lgb.Dataset(train[features].loc[eval_index], 
                                 train[label].loc[eval_index]) 
              # 依据验证集训练模型 
              bst = lgb.train(params, train_part, num_boost_round=NBR, 
                              valid_sets=[train_part, eval], 
                              valid_names=['train', 'valid'], 
                              early_stopping_rounds=ESR, verbose_eval=VBE) 
              # 测试集预测结果并纳入prediction_test容器 
              prediction_test += bst.predict(test[features]) 
              # 验证集预测结果并纳入prediction_train容器 
              prediction_train = prediction_train.append(pd.Series(bst.predict(train[features].loc[eval_index]), 
                                                                   index=eval_index)) 
              # 验证集预测结果 
              eval_pre = bst.predict(train[features].loc[eval_index]) 
              # 计算验证集上得分 
              score = np.sqrt(mean_squared_error(train[label].loc[eval_index].values, eval_pre)) 
              # 纳入cv_score容器 
              cv_score.append(score) 
               
          # Part 4.打印/输出结果 
          # 打印验证集得分与平均得分 
          print(cv_score, sum(cv_score) / 5) 
          # 将验证集上预测结果写入本地文件 
          pd.Series(prediction_train.sort_index().values).to_csv(\  preprocess/train_lightgbm.csv\  , index=False) 
          # 将测试集上预测结果写入本地文件 
          pd.Series(prediction_test / 5).to_csv(\  preprocess/test_lightgbm.csv\  , index=False) 
          # 测试集平均得分作为模型最终预测结果 
          test['target'] = prediction_test / 5 
          # 将测试集预测结果写成竞赛要求格式并保存至本地 
          test[['card_id', 'target']].to_csv(\  result/submission_lightgbm.csv\  , index=False) 
          return  ]

最后去算得分

 train_LGBM, test_LGBM = feature_select_wrapper(train, test) 
      best_clf = param_hyperopt(train_LGBM) 
      train_predict(train_LGBM, test_LGBM, best_clf)  

发现分比之前都有提升。

这篇关于kaggle竞赛实战7——其他方案之lightgbm的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1025384

相关文章

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

Java解析JSON的六种方案

《Java解析JSON的六种方案》这篇文章介绍了6种JSON解析方案,包括Jackson、Gson、FastJSON、JsonPath、、手动解析,分别阐述了它们的功能特点、代码示例、高级功能、优缺点... 目录前言1. 使用 Jackson:业界标配功能特点代码示例高级功能优缺点2. 使用 Gson:轻量

Redis KEYS查询大批量数据替代方案

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序... 目录前言KEYS命令问题背景替代方案1.使用 SCAN 命令2. 使用有序集合(Sorted Set)

MyBatis延迟加载的处理方案

《MyBatis延迟加载的处理方案》MyBatis支持延迟加载(LazyLoading),允许在需要数据时才从数据库加载,而不是在查询结果第一次返回时就立即加载所有数据,延迟加载的核心思想是,将关联对... 目录MyBATis如何处理延迟加载?延迟加载的原理1. 开启延迟加载2. 延迟加载的配置2.1 使用

Android WebView的加载超时处理方案

《AndroidWebView的加载超时处理方案》在Android开发中,WebView是一个常用的组件,用于在应用中嵌入网页,然而,当网络状况不佳或页面加载过慢时,用户可能会遇到加载超时的问题,本... 目录引言一、WebView加载超时的原因二、加载超时处理方案1. 使用Handler和Timer进行超

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关