《neural network and deep learning》题解——ch03 如何选择神经网络的超参数

2024-06-02 04:38

本文主要是介绍《neural network and deep learning》题解——ch03 如何选择神经网络的超参数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://blog.csdn.net/u011239443/article/details/77748116

问题一

上一节有问题也是调参,我们在这里讲解:

更改上面的代码来实现 L1 规范化,使用 L1 规范化使用 30 个隐藏元的神经网络对 MNIST数字进行分类。你能够找到一个规范化参数使得比无规范化效果更好么?

如何修改代码可参阅上节:http://blog.csdn.net/u011239443/article/details/77649026#t5

当无规范化时,我们将上节的代码update_mini_batch中做修改:

self.weights = [w - (eta / len(mini_batch)) * nw for w, nw inzip(self.weights, nabla_w)]

total_cost中去掉:

cost += 0.5 * (lmbda / len(data)) * sum(np.linalg.norm(w) ** 2 for w in self.weights)

为了加快我们的训练,我们使得将训练集设置为1000,验证集设置为100:

net.SGD(training_data[:1000],30,10,0.5,evaluation_data=validation_data[:100],monitor_evaluation_accuracy=True)

结果:

Epoch 30 training complete
Acc on evaluation: 17 / 100

加入 L1 , λ = 100.0 时,结果:

Epoch 30 training complete
Acc on evaluation: 11 / 100

λ = 10.0 时,结果:

Epoch 29 training complete
Acc on evaluation: 11 / 100

λ = 1.0 时,结果:

Epoch 30 training complete
Acc on evaluation: 31 / 100

所以当λ = 1.0 时使,可以使得比无规范化效果更好。

问题二

修改 network2.py 来实现提前终止,并让 n 回合不提升终止策略中的 n 称为可以设置的参数。

随机梯度函数多加一个参数max_try:

    def SGD(self, training_data, epochs, mini_batch_size, eta,lmbda=0.0,evaluation_data=None,monitor_evaluation_cost=False,monitor_evaluation_accuracy=False,monitor_training_cost=False,monitor_training_accuray=False,max_try = 100):

cnt 记录不提升的次数,如达到max_try,就退出循环。这里用monitor_evaluation_accuracy举例:

        cnt = 0for j in xrange(epochs):......if monitor_evaluation_accuracy:acc = self.accuracy(evaluation_data)evaluation_accurary.append(acc)if len(evaluation_accurary) > 1 and acc < evaluation_accurary[len(evaluation_accurary)-2]:cnt += 1if cnt >= max_try:breakelse:cnt = 0print "Acc on evaluation: {} / {}".format(acc, n_data)......

问题三

你能够想出不同于 n 回合不提升终止策略的其他提前终止策略么?理想中,规则应该能够获得更高的验证准确率而不需要训练太久。将你的想法实现在 network2.py 中,运行这些实验和 3 回合(10 回合太多,基本上训练全部,所以改成 3)不提升终止策略比较对应的验证准确率和训练的回合数。

策略与实现

多一个参数x,当提升率小于x,则停止。

随机梯度函数多加一个参数max_x:

    def SGD(self, training_data, epochs, mini_batch_size, eta,lmbda=0.0,evaluation_data=None,monitor_evaluation_cost=False,monitor_evaluation_accuracy=False,monitor_training_cost=False,monitor_training_accuray=False,min_x = 0.01):

当提升率小于x,则停止。这里用monitor_evaluation_accuracy举例:

            if monitor_evaluation_accuracy:acc = self.accuracy(evaluation_data)evaluation_accurary.append(acc)if len(evaluation_accurary) > 1 and \(acc - evaluation_accurary[len(evaluation_accurary)-2])*1.0/(1.0*n_data) < min_x:breakprint "Acc on evaluation: {} / {}".format(acc, n_data)

对比

10 回合不提升终止策略:

net.SGD(training_data[:1000],50,10,0.25,5.0,evaluation_data=validation_data[:100],monitor_evaluation_accuracy=True,max_try=3)

的结果:

Epoch 32 training complete
Acc on evaluation: 15 / 100

提升率小于x停止策略:

Epoch 3 training complete
Acc on evaluation: 17 / 100

问题四

更改 network2.py 实现学习规则:每次验证准确率满足满足 10 回合不提升终止策略时改变学习速率;当学习速率降到初始值的 1/128 时终止。

对问题二中的代码进行稍微的修改,128 = 2 ^ 7 。所以,多加个计数 del_cnt 记录学习率减小的次数:

        cnt = 0del_cnt = 0for j in xrange(epochs):......if monitor_evaluation_accuracy:acc = self.accuracy(evaluation_data)evaluation_accurary.append(acc)if len(evaluation_accurary) > 1 and acc < evaluation_accurary[len(evaluation_accurary)-2]:cnt += 1if cnt >= max_try:del_cnt += 1if del_cnt >= 7:breaketa /= 2.0cnt = 0   else:cnt = 0print "Acc on evaluation: {} / {}".format(acc, n_data)

问题五

使用梯度下降来尝试学习好的超参数的值其实很受期待。你可以想像关于使用梯度下降来确定 λ 的障碍么?你能够想象关于使用梯度下降来确定 η 的障碍么?

  • 使用梯度下降来确定 λ 的障碍在于,

    得:
    $ \frac{∂C}{∂λ} = \frac{\sum_ww^2}{2n} = 0$
    最优化目标使得 w = 0,但是 w 也是我们原来需要优化的。

  • 使用梯度下降来确定 η 的障碍在于,η 的最优解不是一个常数,随着迭代次数的增加,η 的最优解会越来越小。

这里写图片描述

这篇关于《neural network and deep learning》题解——ch03 如何选择神经网络的超参数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023053

相关文章

LeetCode11. 盛最多水的容器题解

LeetCode11. 盛最多水的容器题解 题目链接: https://leetcode.cn/problems/container-with-most-water 示例 思路 暴力解法 定住一个柱子不动,然后用其他柱子与其围住面积,取最大值。 代码如下: public int maxArea1(int[] height) {int n = height.length;int

(超详细)YOLOV7改进-Soft-NMS(支持多种IoU变种选择)

1.在until/general.py文件最后加上下面代码 2.在general.py里面找到这代码,修改这两个地方 3.之后直接运行即可

ABAP怎么把传入的参数刷新到内表里面呢?

1.在执行相关的功能操作之前,优先执行这一段代码,把输入的数据更新入内表里面 DATA: lo_guid TYPE REF TO cl_gui_alv_grid.CALL FUNCTION 'GET_GLOBALS_FROM_SLVC_FULLSCR'IMPORTINGe_grid = lo_guid.CALL METHOD lo_guid->check_changed_data.CALL M

人工智能机器学习算法总结神经网络算法(前向及反向传播)

1.定义,意义和优缺点 定义: 神经网络算法是一种模仿人类大脑神经元之间连接方式的机器学习算法。通过多层神经元的组合和激活函数的非线性转换,神经网络能够学习数据的特征和模式,实现对复杂数据的建模和预测。(我们可以借助人类的神经元模型来更好的帮助我们理解该算法的本质,不过这里需要说明的是,虽然名字是神经网络,并且结构等等也是借鉴了神经网络,但其原型以及算法本质上还和生物层面的神经网络运行原理存在

python实现最简单循环神经网络(RNNs)

Recurrent Neural Networks(RNNs) 的模型: 上图中红色部分是输入向量。文本、单词、数据都是输入,在网络里都以向量的形式进行表示。 绿色部分是隐藏向量。是加工处理过程。 蓝色部分是输出向量。 python代码表示如下: rnn = RNN()y = rnn.step(x) # x为输入向量,y为输出向量 RNNs神经网络由神经元组成, python

Java面试八股之JVM参数-XX:+UseCompressedOops的作用

JVM参数-XX:+UseCompressedOops的作用 JVM参数-XX:+UseCompressedOops的作用是启用对象指针压缩(Ordinary Object Pointers compression)。这一特性主要应用于64位的Java虚拟机中,目的是为了减少内存使用。在传统的64位系统中,对象引用(即指针)通常占用8字节(64位),而大部分应用程序实际上并不需要如此大的地址空间

神经网络第四篇:推理处理之手写数字识别

到目前为止,我们已经介绍完了神经网络的基本结构,现在用一个图像识别示例对前面的知识作整体的总结。本专题知识点如下: MNIST数据集图像数据转图像神经网络的推理处理批处理  MNIST数据集          mnist数据图像 MNIST数据集由0到9的数字图像构成。像素取值在0到255之间。每个图像数据都相应地标有“7”、“2”、“1”等数字标签。MNIST数据集中,

神经网络第三篇:输出层及softmax函数

在上一篇专题中,我们以三层神经网络的实现为例,介绍了如何利用Python和Numpy编程实现神经网络的计算。其中,中间(隐藏)层和输出层的激活函数分别选择了 sigmoid函数和恒等函数。此刻,我们心中不难发问:为什么要花一个专题来介绍输出层及其激活函数?它和中间层又有什么区别?softmax函数何来何去?下面我们带着这些疑问进入本专题的知识点: 1 输出层概述 2 回归问题及恒等函数 3

神经网络第一篇:激活函数是连接感知机和神经网络的桥梁

前面发布的文章介绍了感知机,了解了感知机可以通过叠加层表示复杂的函数。遗憾的是,设定合适的、能符合预期的输入与输出的权重,是由人工进行的。从本章开始,将进入神经网络的学习,首先介绍激活函数,因为它是连接感知机和神经网络的桥梁。如果读者认知阅读了本专题知识,相信你必有收获。 感知机数学表达式的简化 前面我们介绍了用感知机接收两个输入信号的数学表示如下:

多层感知机不等于神经网络?

在前一章节(https://blog.csdn.net/u012132349/article/details/86166324),我们介绍了感知机可以实现与门、或门、非门。只需给定合适的参数(w1, w2, b)并利用Python就可以简单实现对输入的任意(x1,x2),输出0或1。     今天我们将介绍感知机的局限性(严格说是单层感知机的局限性)。这里我们想用感知机实现异或门,所谓异