本文主要是介绍UVA 10808 - Rational Resistors(高斯消元+并查集+分数+基尔霍夫定律),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
UVA 10808 - Rational Resistors
题意:给定一些结点,有一些电阻,电阻分布在边上,给定一个电路图,每次询问两点,求这两点间的等效电阻
思路:根据基尔霍夫定律,任意一点的电流向量为0,这样就能设每个结点的电势,列出方程,利用高斯消元求解,对于无解的情况,肯定是两点不能连通,这个可以利用并查集判断。
此外这题有个很坑的地方啊,就是高斯消元的姿势不够优美就会爆long long
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;typedef long long ll;struct Frac {ll a, b;Frac() {a = 0; b = 1;}Frac(ll a, ll b) {this->a = a; this->b = b; deal();}void init() {a = 0; b = 1;}ll gcd(ll a, ll b) {while (b) {ll tmp = a % b;a = b;b = tmp;}return a;}void deal() {ll d = gcd(a, b);a /= d; b /= d;if (b < 0) {a = -a;b = -b;}}Frac operator + (Frac c) {Frac ans;ans.a = a * c.b + b * c.a;ans.b = b * c.b;ans.deal();return ans;}Frac operator - (Frac c) {Frac ans;ans.a = a * c.b - b * c.a;ans.b = b * c.b;ans.deal();return ans;}Frac operator * (Frac c) {Frac ans;ans.a = a * c.a;ans.b = b * c.b;ans.deal();return ans;}Frac operator / (Frac c) {Frac ans;ans.a = a * c.b;ans.b = b * c.a;ans.deal();return ans;}void operator += (Frac c) {*this = *this + c;}void operator -= (Frac c) {*this = *this - c;}void operator *= (Frac c) {*this = *this * c;}void operator /= (Frac c) {*this = *this / c;}bool operator > (Frac c) {return a * c.b > b * c.a;}bool operator == (Frac c) { return a * c.b == b * c.a;}bool operator < (Frac c) {return !(*this < c && *this == c);}bool operator >= (Frac c) {return !(*this < c);}bool operator <= (Frac c) {return !(*this > c);}bool operator != (Frac c) {return !(*this == c);}bool operator != (ll c) {return *this != Frac(c, 1);}void operator = (ll c) {this->a = c; this->b = 1;}
};const int N = 20;int t, n, m, parent[N], node[N];
Frac g[N][N], A[N][N];int find(int x) {return x == parent[x] ? x : parent[x] = find(parent[x]);
}Frac gauss(int n, int u, int v) {for (int i = 0; i < n; i++) {int r;for (r = i; r < n; r++)if (A[r][i] != 0)break;if (r == n) continue;for (int j = 0; j <= n; j++) swap(A[i][j], A[r][j]);for (int j = n; j > i; j--) A[i][j] /= A[i][i];A[i][i] = 1;for (int j = 0; j < n; j++) {if (i == j) continue;if (A[j][i] != 0) {for (int k = n; k > i; k--)A[j][k] -= A[j][i] * A[i][k];A[j][i] = 0;}}}return A[u][n] / A[u][u] - A[v][n] / A[v][v];
}Frac solve(int u, int v) {int tu, tv, tn = 0;for (int i = 0; i < n; i++) {if (i == u) tu = tn;if (i == v) tv = tn;if (find(u) == find(i)) node[tn++] = i;}tn++;for (int i = 0; i < tn; i++)for (int j = 0; j <= tn; j++)A[i][j].init();for (int i = 0; i < tn - 1; i++) {for (int j = 0; j < tn - 1; j++) {if (i == j) continue;int u = node[i], v = node[j];A[i][i] += g[u][v];A[i][j] -= g[u][v];}}A[tu][tn] = 1;A[tv][tn] = -1;A[tn - 1][0] = 1;return gauss(tn, tu, tv);
}int main() {int cas = 0;scanf("%d", &t);while (t--) {scanf("%d%d", &n, &m);for (int i = 0; i < n; i++) {parent[i] = i;for (int j = 0; j < n; j++)g[i][j].init();}int u, v;ll r;while (m--) {scanf("%d%d%lld", &u, &v, &r);if (u == v) continue;g[u][v] += Frac(1, r);g[v][u] += Frac(1, r);int pu = find(u);int pv = find(v);if (pu != pv)parent[pu] = pv;}scanf("%d", &m);printf("Case #%d:\n", ++cas);while (m--) {scanf("%d%d", &u, &v);int pu = find(u);int pv = find(v);printf("Resistance between %d and %d is ", u, v);if (pu != pv) printf("1/0\n");else {Frac ans = solve(u, v);printf("%lld/%lld\n", ans.a, ans.b);}}printf("\n");}return 0;
}
这篇关于UVA 10808 - Rational Resistors(高斯消元+并查集+分数+基尔霍夫定律)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!