法线方程实现最小二乘拟合(Matlab)

2024-06-01 11:44

本文主要是介绍法线方程实现最小二乘拟合(Matlab),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、问题描述

利用法线方程实现最小二乘拟合。

二、实验目的

掌握法线方程方法的原理,能够利用法线方程完成去一组离散数据点的拟合。

三、实验内容及要求

  1. 对于下面的不一致系统,构造法线方程,计算最小二乘以及2-范数误差。
    [ 3 − 1 2 4 1 0 − 3 2 1 1 1 5 − 2 0 3 ] [ x 1 x 2 x 3 ] = [ 10 10 − 5 15 0 ] \left[\begin{array}{rrr} 3 & -1 & 2 \\ 4 & 1 & 0 \\ -3 & 2 & 1 \\ 1 & 1 & 5 \\ -2 & 0 & 3 \end{array}\right] \left[\begin{array}{r} x_1 \\ x_2 \\ x_3 \end{array}\right] = \left[\begin{array}{r} 10 \\ 10 \\ -5 \\ 15 \\ 0 \end{array}\right] 343121121020153 x1x2x3 = 10105150

    % 系数矩阵
    A = [3, -1, 2;4, 1, 0;-3, 2, 1;1, 1, 5;-2, 0, 3];% 右侧的常数矩阵
    B = [10; 10; -5; 15; 0];% 使用最小二乘法求解
    X = lsqlin(A, B);% 计算法线方程的系数
    a = X(1);
    b = X(2);
    c = X(3);fprintf('构造的法线方程: %.2fx + %.2fy + %.2fz\n', a, b, c);
    fprintf('最小二乘解: x1 = %.2f, x2 = %.2f, x3 = %.2f\n', X(1), X(2), X(3));% 计算2-范数误差
    error = norm(A * X - B, 2);
    fprintf('2-范数误差为: %.2f\n', error);
    
  2. 如下为日本2023 年的每月石油消耗数据。
    利用周期模型y = c1 + c2 * cos2𝜋 + c3 * sin2𝜋 + c4 * cos4𝜋进行拟合,并计算RMSE。

    monthoil use (10^6 bbl/day)
    Jan6.224
    Feb6.665
    Mar6.241
    Apr5.302
    May5.073
    Jun5.127
    Jul4.994
    Aug5.012
    Sep5.108
    Oct5.377
    Nov5.510
    Dec6.372
    % 输入数据
    month = 1:12;
    oil_use = [6.224, 6.665, 6.241, 5.302, 5.073, 5.127, 4.994, 5.012, 5.108, 5.377, 5.51, 6.372];% 构造周期模型
    A = [ones(12, 1), cos(2 * pi * month'/12), sin(2 * pi * month'/12), cos(4 * pi * month'/12)];% 使用最小二乘法求解
    c = lsqlin(A, oil_use);% 构造法线方程
    y_fit = c(1) + c(2) * cos(2 * pi * month/12) + c(3) * sin(2 * pi * month/12) + c(4) * cos(4 * pi * month/12);% 计算RMSE
    rmse = sqrt(mean((oil_use - y_fit).^2));fprintf('构造的法线方程: y = %.4f + %.4f * cos(2*pi*x/12) + %.4f * sin(2*pi*x/12) + %.4f * cos(4*pi*x/12)\n', c(1), c(2), c(3), c(4));
    fprintf('最小二乘解: c1 = %.4f, c2 = %.4f, c3 = %.4f, c4 = %.4f\n', c(1), c(2), c(3), c(4));
    fprintf('RMSE: %.4f\n', rmse);
    

四、算法原理

给出法线方程进行数据拟合的过程。

背景:
数据拟合是一种通过数学模型来近似描述和预测现有数据的方法。法线方程(Normal Equation)是一种常用于最小二乘法(Least Squares)的工具,用于找到最优拟合参数,以最小化观测数据与模型预测之间的误差。

法线方程的基本形式:
对于一个线性模型,假设我们有一个包含m个样本的矩阵X(设计矩阵)和一个包含目标变量的列向量y,线性模型可以表示为:

y = X β + ε y = X \beta + \varepsilon y=+ε

其中, y y y 是目标变量, X X X 是设计矩阵, β \beta β 是待求参数向量, ε \varepsilon ε 是误差向量。最小二乘法的目标是找到最优的 β \beta β,使得误差的平方和最小。

法线方程的推导:
法线方程通过对最小二乘问题的偏导数为零的条件进行求解而得到。对于线性回归问题,法线方程可以写作:

X T X β = X T y X^T X \beta = X^T y XT=XTy

其中, X T X^T XT 表示矩阵 X X X 的转置。解这个方程可以得到最优的参数向量 β \beta β

法线方程的拟合过程:

  1. 构造设计矩阵 (X): 将样本数据按照模型的形式构造成设计矩阵。每一行对应一个样本,每一列对应一个特征。

  2. 构造目标变量向量 (y): 将观测到的目标变量按照样本顺序构造成列向量。

  3. 计算法线方程: 使用法线方程 X T X β = X T y X^T X \beta = X^T y XT=XTy 求解参数向量 β \beta β。这可以通过直接求解方程或者使用矩阵运算库中的函数来完成。

  4. 得到最小二乘解: 将得到的参数向量 β \beta β 代入线性模型,得到最小二乘拟合的结果。

  5. 评估拟合效果: 可以使用各种评估指标,如均方根误差(RMSE)、残差分析等,来评估拟合模型与实际数据之间的拟合质量。

优势和注意事项:

  • 优势: 法线方程提供了一种解决最小二乘问题的直观数学方法,具有简单、清晰的数学推导过程。

  • 注意事项: 在实际应用中,需要确保模型假设的合理性,避免过拟合或欠拟合。此外,若设计矩阵 X T X X^T X XTX 不可逆,可能需要考虑正则化方法。

总结:
法线方程作为最小二乘法的数学基础,为数据拟合提供了可靠的理论支持。通过构造法线方程,我们能够得到最优参数,实现对数据的准确拟合。在实际应用中,理解法线方程的原理对于建立有效的拟合模型至关重要。

五、测试数据及结果
1.给出构造的法线方程、最小二乘解、2-范数误差;
请添加图片描述

2.给出构造的法线方程、最小二乘解、RMSE.
请添加图片描述

六、总结与思考

法线方程作为最小二乘法的数学基础,为数据拟合提供了可靠的理论支持。通过构造法线方程,我们能够得到最优参数,实现对数据的准确拟合。在实际应用中,理解法线方程的原理对于建立有效的拟合模型至关重要。

这篇关于法线方程实现最小二乘拟合(Matlab)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1020920

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

Open3D 基于法线的双边滤波

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 输入参数: 输出参数: 参数影响: 2.2完整代码 三、实现效果 3.1原始点云 3.2滤波后点云 Open3D点云算法汇总及实战案例汇总的目录地址: Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客 一、概述         基于法线的双边

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D