【前缀和 记忆化搜索】LeetCode1444. 切披萨的方案数

2024-06-01 07:44

本文主要是介绍【前缀和 记忆化搜索】LeetCode1444. 切披萨的方案数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文涉及的基础知识点

C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频
动态规划 记忆化搜索

LeetCode1444. 切披萨的方案数

给你一个 rows x cols 大小的矩形披萨和一个整数 k ,矩形包含两种字符: ‘A’ (表示苹果)和 ‘.’ (表示空白格子)。你需要切披萨 k-1 次,得到 k 块披萨并送给别人。
切披萨的每一刀,先要选择是向垂直还是水平方向切,再在矩形的边界上选一个切的位置,将披萨一分为二。如果垂直地切披萨,那么需要把左边的部分送给一个人,如果水平地切,那么需要把上面的部分送给一个人。在切完最后一刀后,需要把剩下来的一块送给最后一个人。
请你返回确保每一块披萨包含 至少 一个苹果的切披萨方案数。由于答案可能是个很大的数字,请你返回它对 10^9 + 7 取余的结果。
示例 1:
在这里插入图片描述

输入:pizza = [“A…”,“AAA”,“…”], k = 3
输出:3
解释:上图展示了三种切披萨的方案。注意每一块披萨都至少包含一个苹果。
示例 2:

输入:pizza = [“A…”,“AA.”,“…”], k = 3
输出:1
示例 3:

输入:pizza = [“A…”,“A…”,“…”], k = 1
输出:1

提示:
1 <= rows, cols <= 50
rows == pizza.length
cols == pizza[i].length
1 <= k <= 10
pizza 只包含字符 ‘A’ 和 ‘.’ 。

预处理

本题解点的坐标用(x,y)表示,而不是行列。
任何时间,待切的蛋糕一定保留原始蛋糕的右下角(cols-1,rows-1)。所以只需要枚举(left,top)。
垂直切:左边的部分,bottom一定和原始蛋糕bottom,相同。只需要枚举left,top,right。
水平且:上边的部分,right一定和原始蛋糕同。只需要枚举left,top,bottom。
vLeft[left][t][r] 记录(left,t,r,rows-1) 是否包括苹果。
vTop[left][[t][b] 记录(left,t,cols-1,b) 是否包括苹果。
计算vLeft的过程如下:
符合以下条件之一vLeft[left][t][r] 就有苹果:
一,(left,t)有苹果。
二,vLeft(left+1,t,r)有苹果。
三,vLeft(left,t+1,r)有苹果。
vTop类似。
m =max(rows,cols)。 空间复杂度O(mmm),时间复杂也是O(mmm)。

** 可以用二维前缀和计算左边(上边)的苹果数**。

动态规划

动态的状态表示

dp[k][left][top] 表示将蛋糕(left,top,cols-1,rows-1)切k次的方案数。
空间复杂度:O(k × \times × rows × \times × cols)

动态规划的转移方程

垂直切
dp[k][left][top] += F o r x : l e f t + 1 : c o l s − 1 v L e f t [ l e f t ] [ t o p ] [ x − 1 ] 有苹果 D p ( k − 1 , x , t o p ) \large For_{x:left+1:cols-1}^{vLeft[left][top][x-1]有苹果}Dp(k-1,x,top) Forx:left+1:cols1vLeft[left][top][x1]有苹果Dp(k1,x,top)
记忆化搜索: Dp是函数,如果dp有对应值,则返回dp的值。否则更新dp的值,并返回。避免重复计算。
水平切:
dp[k][left][top] += F o r x : t o p + 1 : r o w s − 1 v T o p [ l e f t ] [ t o p ] [ x − 1 ] 有苹果 D p ( k − 1 , l e f t , x ) \large For_{x:top+1:rows-1}^{vTop[left][top][x-1]有苹果}Dp(k-1,left,x) Forx:top+1:rows1vTop[left][top][x1]有苹果Dp(k1,left,x)
注意:送出的部分必须有一个苹果,包括的部分必须有k个苹果。

时间复杂度:O(k × \times × rows × \times × cols × \times × (rows+cols))

动态规划的初始值

dp[0][left][top] = (left,top,m_iC-1,m_iR-1)是否有苹果。 如果是记忆化搜索,还需要vHasDo 记录各状态是否处理。

动态规划的填表顺序

直接Do(k-1,0,0) 是记忆化搜索。从1到k 计算所有状态的值,是动态规划。记忆化搜索可以避免计算一些不需要计算的值。

动态规划的返回值

dp[k][0][0]

代码

核心代码

template<int MOD = 1000000007>
class C1097Int
{
public:C1097Int(long long llData = 0) :m_iData(llData% MOD){}C1097Int  operator+(const C1097Int& o)const{return C1097Int(((long long)m_iData + o.m_iData) % MOD);}C1097Int& operator+=(const C1097Int& o){m_iData = ((long long)m_iData + o.m_iData) % MOD;return *this;}C1097Int& operator-=(const C1097Int& o){m_iData = (m_iData + MOD - o.m_iData) % MOD;return *this;}C1097Int  operator-(const C1097Int& o){return C1097Int((m_iData + MOD - o.m_iData) % MOD);}C1097Int  operator*(const C1097Int& o)const{return((long long)m_iData * o.m_iData) % MOD;}C1097Int& operator*=(const C1097Int& o){m_iData = ((long long)m_iData * o.m_iData) % MOD;return *this;}C1097Int  operator/(const C1097Int& o)const{return *this * o.PowNegative1();}C1097Int& operator/=(const C1097Int& o){*this /= o.PowNegative1();return *this;}bool operator==(const C1097Int& o)const{return m_iData == o.m_iData;}bool operator<(const C1097Int& o)const{return m_iData < o.m_iData;}C1097Int pow(long long n)const{C1097Int iRet = 1, iCur = *this;while (n){if (n & 1){iRet *= iCur;}iCur *= iCur;n >>= 1;}return iRet;}C1097Int PowNegative1()const{return pow(MOD - 2);}int ToInt()const{return m_iData;}
private:int m_iData = 0;;
};template<class T = int>
class CPreSum2 {
public:template<class _Pr>CPreSum2(int rowCnt, int colCount, _Pr pr):m_iRowCnt(rowCnt),m_iColCnt(colCount){m_vSum.assign(rowCnt + 1, vector<int>(colCount + 1));for (int r = 0; r < rowCnt; r++) {for (int c = 0; c < colCount; c++) {m_vSum[r + 1][c + 1] = m_vSum[r][c + 1] + m_vSum[r + 1][c] - m_vSum[r][c] + pr(r, c);}}}T Get(int left, int top, int right, int bottom)const {return m_vSum[bottom + 1][right + 1] - m_vSum[top][right + 1] - m_vSum[bottom + 1][left] + m_vSum[top][left];}T GetTopLeft(int left, int top) { return Get(left, top, m_iColCnt - 1, m_iRowCnt - 1); }vector<vector<T>> m_vSum;const int m_iRowCnt, m_iColCnt;
};
class Solution {
public:int ways(vector<string>& pizza, int k) {m_iR = pizza.size();m_iC = pizza[0].size();CPreSum2<int> preSum(m_iR, m_iC, [&](int r, int c) {return 'A' == pizza[r][c]; });	m_dp.assign(k, vector<vector<C1097Int<>>>(m_iC, vector<C1097Int<>>(m_iR)));m_vHasDo.assign(k, vector<vector<bool>>(m_iC, vector<bool>(m_iR)));for (int left = 0; left < m_iC; left++) {for (int top = 0; top < m_iR; top++) {m_dp[0][left][top] = preSum.GetTopLeft(left, top)>0;m_vHasDo[0][left][top] = true;}}return Rec(preSum, pizza, k-1, 0, 0).ToInt();}C1097Int<> Rec( CPreSum2<int>& preSum,  vector<string>& pizza, int k, int left, int top) {auto& iRet = m_dp[k][left][top];if (m_vHasDo[k][left][top]) { return iRet; }m_vHasDo[k][left][top] = true;int cnt = preSum.Get(left, top, m_iC - 1, m_iR - 1);//当前蛋糕有多少苹果for (int x = left + 1; x <= m_iC - 1; x++) {//垂直切const int iSub = preSum.Get(left, top, x - 1, m_iR - 1);//送出多少苹果if (0 == iSub ) { continue; }if (cnt - iSub < k ) { continue; }iRet += Rec(preSum, pizza, k - 1, x, top);}for (int x = top + 1; x <= m_iR - 1; x++) {//水平切const int iSub = preSum.Get(left, top, m_iC - 1, x - 1);if (0 == iSub) { continue; }if (cnt - iSub < k) { continue; }iRet += Rec(preSum, pizza, k - 1, left, x);}return iRet;}vector<vector<vector<C1097Int<> >>> m_dp;vector<vector<vector<bool >>> m_vHasDo;int m_iR, m_iC;
};

VS自带单元测试

template<int MOD = 1000000007>
class C1097Int
{
public:C1097Int(long long llData = 0) :m_iData(llData% MOD){}C1097Int  operator+(const C1097Int& o)const{return C1097Int(((long long)m_iData + o.m_iData) % MOD);}C1097Int& operator+=(const C1097Int& o){m_iData = ((long long)m_iData + o.m_iData) % MOD;return *this;}C1097Int& operator-=(const C1097Int& o){m_iData = (m_iData + MOD - o.m_iData) % MOD;return *this;}C1097Int  operator-(const C1097Int& o){return C1097Int((m_iData + MOD - o.m_iData) % MOD);}C1097Int  operator*(const C1097Int& o)const{return((long long)m_iData * o.m_iData) % MOD;}C1097Int& operator*=(const C1097Int& o){m_iData = ((long long)m_iData * o.m_iData) % MOD;return *this;}C1097Int  operator/(const C1097Int& o)const{return *this * o.PowNegative1();}C1097Int& operator/=(const C1097Int& o){*this /= o.PowNegative1();return *this;}bool operator==(const C1097Int& o)const{return m_iData == o.m_iData;}bool operator<(const C1097Int& o)const{return m_iData < o.m_iData;}C1097Int pow(long long n)const{C1097Int iRet = 1, iCur = *this;while (n){if (n & 1){iRet *= iCur;}iCur *= iCur;n >>= 1;}return iRet;}C1097Int PowNegative1()const{return pow(MOD - 2);}int ToInt()const{return m_iData;}
private:int m_iData = 0;;
};template<class T = int>
class CPreSum2 {
public:template<class _Pr>CPreSum2(int rowCnt, int colCount, _Pr pr):m_iRowCnt(rowCnt),m_iColCnt(colCount){m_vSum.assign(rowCnt + 1, vector<int>(colCount + 1));for (int r = 0; r < rowCnt; r++) {for (int c = 0; c < colCount; c++) {m_vSum[r + 1][c + 1] = m_vSum[r][c + 1] + m_vSum[r + 1][c] - m_vSum[r][c] + pr(r, c);}}}T Get(int left, int top, int right, int bottom)const {return m_vSum[bottom + 1][right + 1] - m_vSum[top][right + 1] - m_vSum[bottom + 1][left] + m_vSum[top][left];}T GetTopLeft(int left, int top) { return Get(left, top, m_iColCnt - 1, m_iRowCnt - 1); }vector<vector<T>> m_vSum;const int m_iRowCnt, m_iColCnt;
};
class Solution {
public:int ways(vector<string>& pizza, int k) {m_iR = pizza.size();m_iC = pizza[0].size();CPreSum2<int> preSum(m_iR, m_iC, [&](int r, int c) {return 'A' == pizza[r][c]; });	m_dp.assign(k, vector<vector<C1097Int<>>>(m_iC, vector<C1097Int<>>(m_iR)));m_vHasDo.assign(k, vector<vector<bool>>(m_iC, vector<bool>(m_iR)));for (int left = 0; left < m_iC; left++) {for (int top = 0; top < m_iR; top++) {m_dp[0][left][top] = preSum.GetTopLeft(left, top)>0;m_vHasDo[0][left][top] = true;}}return Rec(preSum, pizza, k-1, 0, 0).ToInt();}C1097Int<> Rec( CPreSum2<int>& preSum,  vector<string>& pizza, int k, int left, int top) {auto& iRet = m_dp[k][left][top];if (m_vHasDo[k][left][top]) { return iRet; }m_vHasDo[k][left][top] = true;int cnt = preSum.Get(left, top, m_iC - 1, m_iR - 1);//当前蛋糕有多少苹果for (int x = left + 1; x <= m_iC - 1; x++) {//垂直切const int iSub = preSum.Get(left, top, x - 1, m_iR - 1);//送出多少苹果if (0 == iSub ) { continue; }if (cnt - iSub < k ) { continue; }iRet += Rec(preSum, pizza, k - 1, x, top);}for (int x = top + 1; x <= m_iR - 1; x++) {//水平切const int iSub = preSum.Get(left, top, m_iC - 1, x - 1);if (0 == iSub) { continue; }if (cnt - iSub < k) { continue; }iRet += Rec(preSum, pizza, k - 1, left, x);}return iRet;}vector<vector<vector<C1097Int<> >>> m_dp;vector<vector<vector<bool >>> m_vHasDo;int m_iR, m_iC;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
《喜缺全书算法册》以原理、正确性证明、总结为主。
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【前缀和 记忆化搜索】LeetCode1444. 切披萨的方案数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1020393

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

Android平台播放RTSP流的几种方案探究(VLC VS ExoPlayer VS SmartPlayer)

技术背景 好多开发者需要遴选Android平台RTSP直播播放器的时候,不知道如何选的好,本文针对常用的方案,做个大概的说明: 1. 使用VLC for Android VLC Media Player(VLC多媒体播放器),最初命名为VideoLAN客户端,是VideoLAN品牌产品,是VideoLAN计划的多媒体播放器。它支持众多音频与视频解码器及文件格式,并支持DVD影音光盘,VCD影

hdu 4517 floyd+记忆化搜索

题意: 有n(100)个景点,m(1000)条路,时间限制为t(300),起点s,终点e。 访问每个景点需要时间cost_i,每个景点的访问价值为value_i。 点与点之间行走需要花费的时间为g[ i ] [ j ] 。注意点间可能有多条边。 走到一个点时可以选择访问或者不访问,并且当前点的访问价值应该严格大于前一个访问的点。 现在求,从起点出发,到达终点,在时间限制内,能得到的最大

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.

hdu4277搜索

给你n个有长度的线段,问如果用上所有的线段来拼1个三角形,最多能拼出多少种不同的? import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;

如何选择SDR无线图传方案

在开源软件定义无线电(SDR)领域,有几个项目提供了无线图传的解决方案。以下是一些开源SDR无线图传方案: 1. **OpenHD**:这是一个远程高清数字图像传输的开源解决方案,它使用SDR技术来实现高清视频的无线传输。OpenHD项目提供了一个完整的工具链,包括发射器和接收器的硬件设计以及相应的软件。 2. **USRP(Universal Software Radio Periphera