YOLOv5训练自定义数据集模型的参数与指令说明

2024-06-01 03:12

本文主要是介绍YOLOv5训练自定义数据集模型的参数与指令说明,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 一· 概述
    • 二· 准备工作
    • 三· 参数说明
    • 四· 训练模型
      • 4.1 单 GPU 训练
      • 4.2 多 GPU 训练
    • 五· 模型评估
    • 指令示例
      • 1. 单 GPU 训练
      • 2. 多 GPU 训练

一· 概述

📚 本文档主要记录如何在单台或多台机器上使用单个或多个 GPU 正确训练 YOLOv5 数据集 🚀。

二· 准备工作

训练环境安装,参考YOLOv5训练环境的部署与测试

自定义训练数据集处理,参考YOLOv5训练数据集的创建与格式说明

训练集配置文件的处理,参考YOLOv5训练数据集的配置文件说明

三· 参数说明

选择一个预训练模型作为训练的起点。这里我们选择 YOLOv5s,这是最小的、最快的可用模型。请参阅我们的 README 表格,了解所有模型的完整比较。我们将使用多 GPU 在 COCO 数据集上训练此模型。

首先看一下官方源代码脚本中提供了哪些参数:

parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=300)
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--noval', action='store_true', help='only validate final epoch')
parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--quad', action='store_true', help='quad dataloader')
parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')

先重点关注以下参数:

  • --weights:预训练权重的路径。默认为 yolov5s.pt
  • --cfg:模型配置文件的路径。默认为空。如果指定此配置文件,模型将从头开始训练
  • data: 训练数据集配置文件路径。默认为 YOLOv5 提供的 coco128.yaml
  • epochs: 训练轮次。默认为300
  • batch-size: 每个 GPU 的批次大小。默认为16,按照GPU显存大小调整
  • device: 指定使用的训练设备。可指定 cuda device,如 00,1,2,3cpu
  • name: 保存的项目名称。默认为 exp,可根据实际情况修改

四· 训练模型

启动训练前,需要先下载预训练模型权重文件,下载地址:yolov5s.pt

如果你想从头开始训练,还需要根据自己的数据集创建一个模型配置文件,修改默认的模型配置文件,如 yolov5s.yaml,修改 nc 的值为你的数据集类别数。 例如,以猫狗识别数据集为例,将默认的 nc80 修改为 2,如下所示:

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license# Parameters
# nc: 5  # 原coco数据集类别数
nc: 2  # 自定义猫狗数据集类别数
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:- [10,13, 16,30, 33,23]  # P3/8- [30,61, 62,45, 59,119]  # P4/16- [116,90, 156,198, 373,326]  # P5/32# YOLOv5 v6.0 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2[-1, 1, Conv, [128, 3, 2]],  # 1-P2/4[-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]],  # 3-P3/8[-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]],  # 5-P4/16[-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32[-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]],  # 9]# YOLOv5 v6.0 head
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]],  # cat backbone P4[-1, 3, C3, [512, False]],  # 13[-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]],  # cat backbone P3[-1, 3, C3, [256, False]],  # 17 (P3/8-small)[-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]],  # cat head P4[-1, 3, C3, [512, False]],  # 20 (P4/16-medium)[-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]],  # cat head P5[-1, 3, C3, [1024, False]],  # 23 (P5/32-large)[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)]

4.1 单 GPU 训练

从预训练模型开始训练,训练自定义数据集或使用不同尺寸的模型,相应的更改 --data--weights 参数即可,指令如下:

python train.py --weights yolov5s.pt --data coco.yaml --batch-size 64 --device 0 --name yolov5s_results

训练完成后,模型文件保存在 runs/train/yolov5s_results 目录下。

如果数据量足够多,可以选择从头开始训练,需要添加 --cfg 参数指定模型的配置文件,同时,--weights 参数值为空,指令如下:

python train.py --cfg yolov5s.yaml --weights "" --data coco.yaml --batch-size 64 --device 0 --name yolov5s_results

YOLOv5 提供了多种模型配置文件,如 yolov5s.yamlyolov5m.yamlyolov5l.yamlyolov5x.yaml,可以根据实际情况选择合适的模型配置文件。
800

4.2 多 GPU 训练

多 GPU DataParallel 模式(⚠️ 不推荐

你可以在 DataParallel 模式下增加设备以使用多个 GPU。

python train.py --weights yolov5s.pt --data coco.yaml --batch-size 64  --name yolov5s_results --device 0,1

与只使用 1 个 GPU 相比,此方法速度较慢,几乎不会加快训练速度。

多 GPU DistributedDataParallel 模式(✅ 推荐)

使用此模式需要使用指令 python -m torch.distributed.run --nproc_per_node,后面再跟上训练参数。例如,使用 2 个 GPU 训练 YOLOv5s 模型,指令如下:

python -m torch.distributed.run --nproc_per_node 2 train.py --batch 64 --data coco.yaml --weights yolov5s.pt --device 0,1

注意: --nproc_per_node 参数指定你要使用的 GPU 数量。在上面的示例中,它是 2。--batch 是总批次大小。它将平均分配给每个 GPU。在上面的示例中,它是 64/2= 32/GPU

💡 提示!PyTorch>=1.9 中,torch.distributed.run 替换了 torch.distributed.launch。有关详细信息,请参阅文档。

使用特定 GPU

你可以通过简单地传递 --device 后跟你的特定 GPU 来做到这一点。例如,在下面的代码中,我们将使用 GPU 2,3

python -m torch.distributed.run --nproc_per_node 2 train.py --batch 64 --data coco.yaml --cfg yolov5s.yaml --weights '' --device 2,3

使用 SyncBatchNorm

SyncBatchNorm 可以提高多 GPU 训练的准确性,但是,它会显著降低训练速度。它适用于多 GPU DistributedDataParallel 训练。当每个 GPU 上的批次大小较小(<=8)时,最好使用它。要使用 SyncBatchNorm,只需将 --sync-bn 传递给命令,如下所示,

python -m torch.distributed.run --nproc_per_node 2 train.py --batch 64 --data coco.yaml --cfg yolov5s.yaml --weights '' --sync-bn

五· 模型评估

训练完成后,可以使用以下命令评估模型的性能:

python val.py --data coco.yaml --weights runs/train/yolov5s_results/weights/best.pt --task test

注意: --weights 参数指定了你要评估的模型的权重文件路径。在上面的示例中,它是 runs/train/yolov5s_results/weights/best.pt--task 参数指定了你要执行的任务。在上面的示例中,它是 test,表示评估模型在测试集上的性能,如果是 val,表示评估模型在验证集上的性能。

指令示例

1. 单 GPU 训练

python train.py --weights "" --cfg /path/to/model_cfg.yaml --data /path/to/customer_dataset.yaml --epochs 300 --batch-size 16 --device 0 --name yolov5s_results

2. 多 GPU 训练

python -m torch.distributed.run --nproc_per_node 4 train.py --weights ''   --device 0,1,2,3 --data /path/to/customer_dataset.yaml --cfg /path/to/model_cfg.yaml --batch 256 --epochs 300 --name yolov5s_results

这篇关于YOLOv5训练自定义数据集模型的参数与指令说明的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1019832

相关文章

Spring Boot spring-boot-maven-plugin 参数配置详解(最新推荐)

《SpringBootspring-boot-maven-plugin参数配置详解(最新推荐)》文章介绍了SpringBootMaven插件的5个核心目标(repackage、run、start... 目录一 spring-boot-maven-plugin 插件的5个Goals二 应用场景1 重新打包应用

zookeeper端口说明及介绍

《zookeeper端口说明及介绍》:本文主要介绍zookeeper端口说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、zookeeper有三个端口(可以修改)aVNMqvZ二、3个端口的作用三、部署时注意总China编程结一、zookeeper有三个端口(可以

Go语言中make和new的区别及说明

《Go语言中make和new的区别及说明》:本文主要介绍Go语言中make和new的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 概述2 new 函数2.1 功能2.2 语法2.3 初始化案例3 make 函数3.1 功能3.2 语法3.3 初始化

java中新生代和老生代的关系说明

《java中新生代和老生代的关系说明》:本文主要介绍java中新生代和老生代的关系说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、内存区域划分新生代老年代二、对象生命周期与晋升流程三、新生代与老年代的协作机制1. 跨代引用处理2. 动态年龄判定3. 空间分

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

MySQL之InnoDB存储引擎中的索引用法及说明

《MySQL之InnoDB存储引擎中的索引用法及说明》:本文主要介绍MySQL之InnoDB存储引擎中的索引用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录1、背景2、准备3、正篇【1】存储用户记录的数据页【2】存储目录项记录的数据页【3】聚簇索引【4】二

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Maven中的profiles使用及说明

《Maven中的profiles使用及说明》:本文主要介绍Maven中的profiles使用及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录主要用途定义 Profiles示例:多环境配置激活 Profiles示例:资源过滤示例:依赖管理总结Maven 中的

Before和BeforeClass的区别及说明

《Before和BeforeClass的区别及说明》:本文主要介绍Before和BeforeClass的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Before和BeforeClass的区别一个简单的例子当运行这个测试类时总结Before和Befor

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以