OpenCV学习 基础图像操作 (十五):频域变换及相关操作

2024-05-31 20:52

本文主要是介绍OpenCV学习 基础图像操作 (十五):频域变换及相关操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基础原理

图像的频域处理提供了一种强大的工具,用于分析和处理图像的频率成分。傅里叶变换、小波变换和Gabor变换等技术各有优劣,适用于不同的应用场景。通过选择合适的频域算法,可以实现图像的压缩、去噪、特征提取和增强等多种应用。本篇主要针对常见的傅里叶变换和小波变换来进行介绍.

DFT 离散傅里叶变换

离散傅里叶变换(英语:Discrete Fourier Transform,缩写为DFT),是傅里叶变换在时域和频域上都呈离散的形式,将信号的时域采样变换为其DTFT的频域采样。

在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。即使对有限长的离散信号作DFT,也应当将其看作其周期延拓的变换。在实际应用中通常采用快速傅里叶变换计算DFT。

对于N点序列{x[n]}_{0\leq n < N},它的离散傅里叶变换(DFT)为

\widehat{x}[k]=\sum_{n=0}^{N-1}e^{-i\frac{2\pi }{N}nk}x[n] \ \ \ k = 0,1, ...,N-1

其中e是自然对数的底数,i是虚数单位。通常以符号\mathfrak{F}表示这一变换,即

\widehat{x}=\mathfrak{F}x

离散傅里叶变换的逆变换(IDFT)为:

x[k]=\sum_{k=0}^{N-1}e^{i\frac{2\pi }{N}nk}\widehat{x}[n] \ \ \ n = 0,1, ...,N-1

可以记为:

x=\mathfrak{F}^{-1}\widehat{x}

实际上,DFT和IDFT变换式中和式前面的归一化系数并不重要。在上面的定义中,DFT和IDFT前的系数分别为1和\frac{1}{N}。有时会将这两个系数都改成\frac{1}{\sqrt{N}}

从公式来看,离散傅立叶变换是将图像拆分到不同频率的信号上观察,但是只能观察到整幅图像整体在频域的分布,完全丢弃了时域上的信息,则可能比较不直观.

WT 小波变换

小波变换使用一系列的不同尺度的小波去分解原函数,变换后得到的是原函数在不同尺度小波下的系数。不同的小波通过平移与尺度变换分解,平移是为了得到原函数的时间特性,尺度变换是为了得到原函数的频率特性。

小波变换步骤:

  1. 把小波w(t)和原函数f(t)的开始部分进行比较,计算系数C。系数C表示该部分函数与小波的相似程度。
  2. 把小波向右移k单位,得到小波w(t-k),重复1。重复该步骤直至函数f结束.
  3. 扩展小波w(t),得到小波w(t/2),重复步骤1,2.
  4. 不断扩展小波,重复1,2,3.

相比离散傅立叶变换,小波变换是用一个局部的频域响应子来与图像进行卷积,最后得到是在不同局部位置上的对不同频率的响应强度.

API介绍

DFT

将一张图转换到频域内,再分别通过低通滤波和高通滤波,观察到低通滤波后,图像保存了更多的整体轮廓,而高通滤波后,图像保存了更多的边界处的细节.其中靠近图像中央的是低频区,远离中央的是高频区,亮度代表的是幅度,方向代表的是相位.

import cv2
import numpy as np
import matplotlib.pyplot as plt# 读取图像并转换为灰度图像
img = cv2.imread('lena.jpg', cv2.IMREAD_GRAYSCALE)# 获取图像的行列数
rows, cols = img.shape
nrows = cv2.getOptimalDFTSize(rows)
ncols = cv2.getOptimalDFTSize(cols)
right = ncols - cols
bottom = nrows - rows
padded = cv2.copyMakeBorder(img, 0, bottom, 0, right, cv2.BORDER_CONSTANT, value=0)# 执行傅里叶变换
dft = cv2.dft(np.float32(padded), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)# 计算幅值谱
magnitude_spectrum = 20 * np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))# 创建掩膜,高频保留,低频设置为0
rows, cols = dft_shift.shape[:2]
crow, ccol = rows // 2 , cols // 2
mask = np.ones((rows, cols, 2), np.uint8)
r = 30  # 设置高通滤波器半径
center = [crow, ccol]
x, y = np.ogrid[:rows, :cols]
mask_area = (x - center[0])**2 + (y - center[1])**2 <= r*r
mask[mask_area] = 0# 应用掩膜并进行逆DFT
fshift = dft_shift * mask
f_ishift = np.fft.ifftshift(fshift)
img_back_H = cv2.idft(f_ishift)
img_back_H = cv2.magnitude(img_back_H[:, :, 0], img_back_H[:, :, 1])# 创建掩膜,低频保留,高频设置为0
mask = np.zeros((rows, cols, 2), np.uint8)
mask[mask_area] = 1# 应用掩膜并进行逆DFT
fshift = dft_shift * mask
f_ishift = np.fft.ifftshift(fshift)
img_back_L = cv2.idft(f_ishift)
img_back_L = cv2.magnitude(img_back_L[:, :, 0], img_back_L[:, :, 1])# 显示滤波后的图像
plt.subplot(221), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(222), plt.imshow(magnitude_spectrum, cmap='gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.subplot(223), plt.imshow(img_back_L, cmap='gray')
plt.title('Low Pass Filtered Image'), plt.xticks([]), plt.yticks([])
plt.subplot(224), plt.imshow(img_back_H, cmap='gray')
plt.title('High Pass Filtered Image'), plt.xticks([]), plt.yticks([])
plt.show()

WT

分解过程可描述为:首先对图像的每一行进行 1D-DWT,获得原始图像在水平方向上的低频分量 L 和高频分量 H,然后对变换所得数据的每一列进行 1D-DWT,获得原始图像在水平和垂直方向上的低频分量 LL、水平方向上的低频和垂直方向上的高频 LH、水平方向上的高频和垂直方向上的低频 HL 以及水平和垂直方向上的的高频分量 HH。

import cv2
import pywt
import numpy as np
import matplotlib.pyplot as plt# 读取图像并转换为灰度图像
img = cv2.imread('1.png', cv2.IMREAD_GRAYSCALE)# 选择小波函数
wavelet = 'haar'# 进行二维离散小波变换
coeffs2 = pywt.dwt2(img, wavelet)# 提取系数
LL, (LH, HL, HH) = coeffs2# 显示小波系数图像
plt.figure(figsize=(12, 12))
titles = ['Approximation', 'Horizontal detail', 'Vertical detail', 'Diagonal detail']images = [LL, LH, HL, HH]
for i, (title, image) in enumerate(zip(titles, images)):plt.subplot(2, 2, i + 1)plt.imshow(image, cmap='gray')plt.title(title)plt.axis('off')
plt.show()

参考链接

DFT原理

WT原理

【OpenCV学习笔记】之离散傅里叶变换(DFT)-CSDN博客

【一次讲透小波变换原理,全新角度切入,20分钟时长警告!】

这篇关于OpenCV学习 基础图像操作 (十五):频域变换及相关操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1019020

相关文章

Mysql表的简单操作(基本技能)

《Mysql表的简单操作(基本技能)》在数据库中,表的操作主要包括表的创建、查看、修改、删除等,了解如何操作这些表是数据库管理和开发的基本技能,本文给大家介绍Mysql表的简单操作,感兴趣的朋友一起看... 目录3.1 创建表 3.2 查看表结构3.3 修改表3.4 实践案例:修改表在数据库中,表的操作主要

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

JavaScript Array.from及其相关用法详解(示例演示)

《JavaScriptArray.from及其相关用法详解(示例演示)》Array.from方法是ES6引入的一个静态方法,用于从类数组对象或可迭代对象创建一个新的数组实例,本文将详细介绍Array... 目录一、Array.from 方法概述1. 方法介绍2. 示例演示二、结合实际场景的使用1. 初始化二

Python使用DrissionPage中ChromiumPage进行自动化网页操作

《Python使用DrissionPage中ChromiumPage进行自动化网页操作》DrissionPage作为一款轻量级且功能强大的浏览器自动化库,为开发者提供了丰富的功能支持,本文将使用Dri... 目录前言一、ChromiumPage基础操作1.初始化Drission 和 ChromiumPage

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件