恒压频比开环控制系统Matlab/Simulink仿真分析(SPWM控制方式)

本文主要是介绍恒压频比开环控制系统Matlab/Simulink仿真分析(SPWM控制方式),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍恒压频比的开环控制方法驱动永磁同步电机的转动,首先分析恒压频比的控制原理,然后在Matlab/Simulink中进行永磁同步电机恒压频比开环控制系统的仿真分析,最后将Simulink中的恒压频比控制算法生成代码加载到实际工程中进行工程实现。

一、 恒压频比(V/F)控制原理

变频调速系统一般要求在变频时保持电机气隙磁通为最大值免不变,这样可以在允许的电流下获得最大转矩,使电机具有良好的调速性能,交流电机每相定子感应电动势为:

式中4.44Nk是由电动机结构决定的常数。从上式可以看出,在改变频率时要保持气息磁通。不变,就需要同时改变E,使E,随变化并保持E。1为固定的常数C。因为E,不能直接检测和控制,在忽略定子绕组电阻时E,近似等于电动机端电压U,,而U,和,都可方便地通过变频器控制,因此变频调速系统保持U./,为常数的控制就称为恒压频比控制(VF)。恒压频比开环控制框图如下所示:

永磁同步电机恒压频比控制方法与异步电机恒压频比控制方法相似,也是控制电机输入电压与频率同时变化,从而使气隙磁通保持恒定。该控制方法没有电机电流、电压、位置等物理量的反馈,动态性能较差,在给定目标转速发生变化或者负载突变的情况下容易产生失步和震荡的问题,但该控制方法胜在简单,多适用于对转速精度要求不高的场合。

永磁同步电机恒压频比开环控制系统Matlab/Simulink仿真框图如下:

二、仿真电路分析

2.1.1.恒压频比控制算法

恒压频比控制算法:永磁同步电机转速与频率的换算关系如下所示:

首先,将设定的电机目标转速通过上式换算为频率,由于该开环控制系统没有自动限制启动电流的作用,因此加入了一个斜坡函数使频率有一个平缓的变化过程。例如仿真中设定的目标转速为1200r/min,换算为频率的过程如下图所示:

然后,由恒压频比V/F控制算法特性(下图所示),使输入电压与频率同步变化,从而保持气隙磁通恒定。低频时Us和Eg都较小,定子电阻和漏感压降所占分量比较显著,不能再忽略,此时人为的把定子电压抬高一些,近似的补偿定子阻抗压降,如下图b线所示:

由上图可知输入电压与频率的关系为(带低频补偿的b线,已知(0,U0)(f1N,UsN)):

将频率通过上式换算为电压,由电机的额定转速计算出额定频率f1N(永磁同步电机转速与频率的关系)。永磁同步电机的恒压频比控制为基频以下调速,系统最高频率不能超过额定频率f1N,例如仿真中所选永磁同步电机的额定转速为12540r/min,计算出额定频率f1N为1463Hz,为系统最高设定频率。

目标转速设置为1200r/min,将转速换算为频率,再由频率的变化得到输入电压的变化,如下图所示:

此处作了一个归一化处理,将电压的变化除以电机额定电压,使输出电压的范围落在[0,1]区间内。

将频率转换为角速度,再对角速度求积分获得当前的角度,如下图所示:

此时已获得输入电压的幅值Um与相角wt,再通过下式将幅值与相角的电压表示转化为两相αβ坐标系下的电压表示:

αβ坐标系下的电压表示为:

接着采用反Clark变换,得到最终输入到电机的三相电压:

2.1.2.输出处理

 对恒压频比控制算法的输出电压做处理,使其落在[0,1]的范围内:

2.1.3.主电路

主电路包括逆变电路与永磁同步电机,逆变电路如下图所示,采用Average-Value Inverter模块直接生成三相正弦电压,下图为目标转速1200r/min下输入到电机的电压波形。

2.2.仿真结果分析

2.2.1.设定目标转速为1200r/min

目标转速与实际转速的波形曲线:

稳态时,目标转速与实际转速的误差:

稳态时,电机定子电流:

电机转子位置:

 dq坐标系下的定子电流值:

电磁转矩:

2.2.1.设定目标转速为变化值

目标转速:

目标转速与实际转速:

 从图中可以看出电机加减速有一段斜坡时间,电机加减速的快慢由恒压频比控制算法中由转速换算为频率时所设置的斜坡函数斜率有关。

总结

本章节采用恒压频比的开环控制方法驱动永磁同步电机的转动,分析了恒压频比的控制原理,然后在Matlab/Simulink中进行了永磁同步电机恒压频比开环控制系统的仿真分析,最后将Simulink中的恒压频比控制算法生成代码加载到实际工程中进行了工程实现,为后续章节的分析奠定基础。

这篇关于恒压频比开环控制系统Matlab/Simulink仿真分析(SPWM控制方式)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1018999

相关文章

Mybatis官方生成器的使用方式

《Mybatis官方生成器的使用方式》本文详细介绍了MyBatisGenerator(MBG)的使用方法,通过实际代码示例展示了如何配置Maven插件来自动化生成MyBatis项目所需的实体类、Map... 目录1. MyBATis Generator 简介2. MyBatis Generator 的功能3

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

SpringBoot项目启动后自动加载系统配置的多种实现方式

《SpringBoot项目启动后自动加载系统配置的多种实现方式》:本文主要介绍SpringBoot项目启动后自动加载系统配置的多种实现方式,并通过代码示例讲解的非常详细,对大家的学习或工作有一定的... 目录1. 使用 CommandLineRunner实现方式:2. 使用 ApplicationRunne

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

MYSQL行列转置方式

《MYSQL行列转置方式》本文介绍了如何使用MySQL和Navicat进行列转行操作,首先,创建了一个名为`grade`的表,并插入多条数据,然后,通过修改查询SQL语句,使用`CASE`和`IF`函... 目录mysql行列转置开始列转行之前的准备下面开始步入正题总结MYSQL行列转置环境准备:mysq

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Linux(Centos7)安装Mysql/Redis/MinIO方式

《Linux(Centos7)安装Mysql/Redis/MinIO方式》文章总结:介绍了如何安装MySQL和Redis,以及如何配置它们为开机自启,还详细讲解了如何安装MinIO,包括配置Syste... 目录安装mysql安装Redis安装MinIO总结安装Mysql安装Redis搜索Red

Java文件上传的多种实现方式

《Java文件上传的多种实现方式》文章主要介绍了文件上传接收接口的使用方法,包括获取文件信息、创建文件夹、保存文件到本地的两种方法,以及如何使用Postman进行接口调用... 目录Java文件上传的多方式1.文件上传接收文件接口2.接口主要内容部分3.postman接口调用总结Java文件上传的多方式1

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如