⌈ 传知代码 ⌋ 语音预训练模型wav2vec

2024-05-31 14:52

本文主要是介绍⌈ 传知代码 ⌋ 语音预训练模型wav2vec,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

💛前情提要💛

本文是传知代码平台中的相关前沿知识与技术的分享~

接下来我们即将进入一个全新的空间,对技术有一个全新的视角~

本文所涉及所有资源均在传知代码平台可获取

以下的内容一定会让你对AI 赋能时代有一个颠覆性的认识哦!!!

以下内容干货满满,跟上步伐吧~


📌导航小助手📌

  • 💡本章重点
  • 🍞一. 概述
  • 🍞二. 基本原理
  • 🍞三. 未来应用与挑战
  • 🍞四. 参考案例
  • 🍞五.部署文档
  • 🫓总结


💡本章重点

  • 语音预训练模型wav2vec

🍞一. 概述

论文:wav2vec: Unsupervised Pre-training for Speech Recognition

Wav2Vec(Waveform-to-Vector)是一种在语音处理领域中具有重要意义的技术。它的由来可以追溯到Facebook AI Research(FAIR)在2019年提出的一篇论文,旨在解决语音识别中的数据标记问题。传统的语音识别系统通常需要大量标记好的语音数据进行训练,但这一过程非常耗时且昂贵。Wav2Vec的目标是通过自监督学习的方法,从未标记的语音数据中学习有用的语音表示,从而减少对标记数据的依赖。

Wav2Vec在语音处理领域具有重要的应用前景。语音是一种丰富的信息形式,但传统的语音处理技术往往受限于标记数据的稀缺性和高成本,限制了语音处理技术的发展。Wav2Vec的出现为解决这个问题提供了一种新的思路,它使我们能够更有效地使用未标记的语音数据,提高语音处理任务的性能和可扩展性。因此,Wav2Vec在语音识别、语音合成、语音情感分析等领域有广泛的应用前景。


🍞二. 基本原理

文章提出一种无监督的语音预训练模型 wav2vec,可迁移到语音下游任务。模型预训练一个简单的多层卷积神经网络,并提出了一种噪声对比学习二分类任务(noise contrastive binary classification task),从而使得wav2vec可以在大量未标注的数据上进行训练。实验结果表明wav2vec预训练得到的speech representation超越了帧级别的音素分类任务并且可以显著提升ASR模型的表现,同时,完全卷积架构与使用的递归模型相比,可以在硬件上并行计算。

模型结构如下图,首先将原始音频x编码为潜在空间z的 encoder network(5层卷积),再将潜在空间z转换为contextualized representation(9层卷积),最终特征维度为512x帧数。目标是在特征层面使用当前帧预测未来帧。

在这里插入图片描述

模型将原始音频信号 x 作为输入,基于历史信息和当前输入的信息预测未来的某些采样点,这里使用了两个编码器进行计算。

  • 编码器网络f(encoder network) 将音频信号嵌入到特征空间(latent space) 中将每个xi映射为一个特征向量zi, 类似于language model模型那样获得一个编码向量, 再基于此预测某个zi, 这里j>i;
  • 上下文网络g(context network) 结合了多个时间步长编码器以获得上下文表示(contextualized representations) 如图1。将多个zi转化为context representation C.这里有 $ c_ {i} $ =g( $ z_ {i} $ , $ z_ {i-1} $ $ \cdots $ $ z_ {v} $ )。这里的v为感受野(receptive field size)

然后, 两个网络的输出Z, C都用于损失函数(loss function) 的计算。作者在实验中使用了两种不同的感受野模型, 一种为普通规模, 用来在一般数据集上训练, 另一种则是大规模(wav2vec larqe) 用来在大数据集上训练。在这两种模型中的感受野分别对应210ms和810ms.

模型的loss中自然要包含预测未来某个z的损失。然而仅仅有正例是不够的, 因此作者利用了负采样技术, 作者从一个概率分布 $ p_ {n} $ 中采样出负样本z,最终模型的loss为区分正例和反例的contrastive loss [1]:

在这里插入图片描述
于正样本,损失函数的第一项是负对数似然损失。它衡量了模型预测下一个上下文的编码的准确性。具体地说,对于每个上下文 Ci,模型使用当前上下文的编码作为输入,然后预测下一个上下文的编码。通过比较预测的编码和实际编码,我们可以计算出负对数似然损失。模型使用当前上下文的编码作为输入,然后预测下一个上下文的编码。通过比较预测的编码和实际编码,我们可以计算出负对数似然损失。

通过将这两个项相加,我们得到了wav2vec模型的总损失函数。这个损失函数的目标是最小化正样本的负对数似然损失,同时确保负样本的正则化项尽可能小。这样,模型可以学习到一个有效的编码器,将语音信号映射到有用的表示空间中,以便后续的语音识别任务。


🍞三. 未来应用与挑战

Wav2Vec在语音处理领域有多种应用。它在语音识别中具有重要的作用。通过学习有用的语音表示,Wav2Vec可以显著改善传统的基于标记数据的语音识别系统。其次,Wav2Vec也可以用于语音合成,即将文本转化为语音。通过学习语音表示,Wav2Vec可以生成自然流畅的语音输出。此外,Wav2Vec还可以应用于语音情感分析,帮助识别和理解说话者的情感状态。

然而,Wav2Vec也面临一些挑战。训练一个高质量的Wav2Vec模型通常需要大量的计算资源和时间。模型的训练过程可能需要在大规模的语音数据上进行,并且可能需要使用分布式计算平台。其次,Wav2Vec在处理长时间的语音数据时可能存在一些限制,因为较长的语音片段可能导致内存和计算资源的限制。此外,Wav2Vec对于噪声和低质量语音数据的鲁棒性还有待改进。vq-wav2vec、wav2vec2 进行了相关的改进,感兴趣可以进一步学习。


🍞四. 参考案例

如果有开源的实现可用,可以使用相应的库和工具来简化这些步骤。例如,Facebook fairseq 源码库提供了Wav2Vec相关的模型和工具,可以方便地训练和使用Wav2Vec模型。以下是一个使用Hugging Face库的代码:

import torch
import fairseqcp_path = 'wav2vec_large.pt'
model, cfg, task = fairseq.checkpoint_utils.load_model_ensemble_and_task([cp_path])
model = model[0]
model.eval()wav_input_16khz = torch.randn(1,10000)
z = model.feature_extractor(wav_input_16khz)
c = model.feature_aggregator(z)

🍞五.部署文档

  • 源码库地址 GitHub(FAIR):https://github.com/pytorch/fairseq

  • 文档地址: https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec/README.md

  • 源码系列: https://paperswithcode.com/paper/unsupervised-speech-recognition#code


🫓总结

综上,我们基本了解了“一项全新的技术啦” 🍭 ~~

恭喜你的内功又双叒叕得到了提高!!!

感谢你们的阅读😆

后续还会继续更新💓,欢迎持续关注📌哟~

💫如果有错误❌,欢迎指正呀💫

✨如果觉得收获满满,可以点点赞👍支持一下哟~✨

【传知科技 – 了解更多新知识】

在这里插入图片描述

这篇关于⌈ 传知代码 ⌋ 语音预训练模型wav2vec的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1018241

相关文章

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

使用Python实现文本转语音(TTS)并播放音频

《使用Python实现文本转语音(TTS)并播放音频》在开发涉及语音交互或需要语音提示的应用时,文本转语音(TTS)技术是一个非常实用的工具,下面我们来看看如何使用gTTS和playsound库将文本... 目录什么是 gTTS 和 playsound安装依赖库实现步骤 1. 导入库2. 定义文本和语言 3

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使