[喵咪大数据]Presto查询引擎

2024-05-31 07:18
文章标签 数据 查询 引擎 presto

本文主要是介绍[喵咪大数据]Presto查询引擎,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如果大家正在按照笔者的教程尝试使用大数据组件还是之前有使用过相关的组件,大家会发现一个问题HIVE在负责的查询下调用Mapreduce会很慢,在这个场景下就涌现出很多查询引擎来优化,比如大家熟悉的Spark-SQL,Impala,kilin已经今天的主角Presto, Presto以速度和极强的扩展性取得了胜利,不仅能够提高对HIVE数据查询速度还能和异构数据库进行关联查询,比如HIVE和Mysql进行关联查询,那么我们就来迫不及待的揭开Presto的庐山真面目

附上:

喵了个咪的博客:w-blog.cn
Presto文档 — Presto 0.100 Documentation

1.安装Presto

ca /app/install
wget https://repo1.maven.org/maven2/com/facebook/presto/presto-server/0.184/presto-server-0.184.tar.gz
tar -zxvf presto-server-0.184.tar.gz
mv presto-server-0.184 /usr/local/presto-0.184

设置环境变量

vim /etc/profile
# presto
export PRESTO=/usr/local/presto-0.184
export PATH=$PRESTO/bin:$PATH
source /etc/profile

配置文件

先进入到presto根目录下 cd /usr/local/presto-0.184

配置节点信息

vim etc/node.properties
node.environment=production
node.id=ffffffff-ffff-ffff-ffff-ffffffffffff
node.data-dir=/usr/local/presto-0.184/data

配置jvm相关参数

vim etc/jvm.config
-server
-Xmx16G
-XX:+UseConcMarkSweepGC
-XX:+ExplicitGCInvokesConcurrent
-XX:+CMSClassUnloadingEnabled                                                                                                     -XX:+AggressiveOpts
-XX:+HeapDumpOnOutOfMemoryError
-XX:OnOutOfMemoryError=kill -9 %p
-XX:ReservedCodeCacheSize=150M

Presto Server 相关的配置,每一个 Presto Server 可以通时作为 coordinator 和 worker 使用。你可以将他们配置在一个极点上,但是,在一个大的集群上建议分开配置以提高性能。

vim etc/config.properties
coordinator=true
node-scheduler.include-coordinator=true
http-server.http.port=8080
discovery-server.enabled=true
discovery.uri=http://hadoop-1:8080

coordinator 的最小配置:

coordinator=true
node-scheduler.include-coordinator=false
http-server.http.port=8080
task.max-memory=1GB
discovery-server.enabled=true
discovery.uri=http://cdh1:8080

worker 的最小配置:

coordinator=false
http-server.http.port=8080
task.max-memory=1GB
discovery.uri=http://cdh1:8080

可选的,作为测试,你可以在一个节点上同时配置两者(我们在单节点上使用先选择这个配置):

coordinator=true
node-scheduler.include-coordinator=true
http-server.http.port=8080
task.max-memory=1GB
discovery-server.enabled=true
discovery.uri=http://cdh1:8080

参数说明:

  • coordinator:Presto 实例是否以 coordinator 对外提供服务
  • node-scheduler.include-coordinator:是否允许在 coordinator 上进行调度任务(单机测试配置为true不然没有节点可以使用)
  • http-server.http.port:HTTP 服务的端口
  • task.max-memory=1GB:每一个任务(对应一个节点上的一个查询计划)所能使用的最大内存
  • discovery-server.enabled:是否使用 Discovery service 发现集群中的每一个节点。
  • discovery.uri:Discovery server 的 url

配置日志等级

vim etc/log.properties
com.facebook.presto=INFO

Catalog配置

如果你想使用 hive 的连接器,则创建 hive.properties:

mkdir etc/catalog
vim etc/catalog/hive.properties
connector.name=hive-hadoop2
hive.metastore.uri=thrift://hadoop-1:9083
hive.config.resources=/usr/local/hadoop-2.7.3/etc/hadoop/core-site.xml,/usr/local/hadoop-2.7.3/etc/hadoop/hdfs-site.xml

关于hive的连接器有以下几种可以更具安装的hive版本信息进行选择

  • hive-cdh5
  • hive-cdh4
  • hive-hadoop1
  • hive-hadoop2

启动HIVE metastore 和 hiveserver2

hive --service metastore
hive --service hiveserver2

启动presto

launcher start  -- 后台运行
launcher run   --日志运行
launcher stop  --停止

2.使用presto-cli查询

cd /usr/local/presto-0.184/bin/
wget https://repo1.maven.org/maven2/com/facebook/presto/presto-cli/0.184/presto-cli-0.184-executable.jar
mv presto-cli-0.184-executable.jar presto-cli
chmod -R 777 presto-cli
presto-cli --server hadoop-1:8080 --catalog hive --schema default

此时就可以正常的执行SQL 了 ,在数据量大的查询情况下速度基本比Hive快了5-6倍

presto:default> show tables;Table      
----------------employee       
(11 rows)Query 20170919_031227_00002_mmfcn, FINISHED, 1 node
Splits: 18 total, 18 done (100.00%)
0:00 [11 rows, 327B] [35 rows/s, 1.03KB/s]

关于查询出来的数据常常要导出数据,Presto也提供导出CSV文件的方式

presto-cli --server hadoop-1:8080 --catalog hive --schema default --execute "select msn,count(*) from apilog where apiname = 'Classify.categoryAppList' group by msn;"  --output-format CSV_HEADER > Classify.csv

3. 在线管理工具Airpal

cd /usr/local/
git clone https://github.com/airbnb/airpal.git
cd airpal
# 构建Aripal
./gradlew clean shadowJar -Dairpal.useLocalNode

创建mysql数据库

mysql -u root -p
mysql> CREATE DATABASE airpal;
mysql> USE airpal;
mysql> CREATE USER 'airpal'@'localhost' IDENTIFIED BY 'airpal';
mysql> GRANT ALL ON airpal.* TO 'airpal'@'localhost' IDENTIFIED BY 'airpal';
mysql> GRANT ALL ON airpal.* TO 'airpal'@'%' IDENTIFIED BY 'airpal';
mysql> FLUSH PRIVILEGES;
mysql> quit;

配置文件设置

cp reference.example.yml reference.yml   
vim reference.yml# HTTP-specific options.# 最好查询设置的端口是否被占用。server:applicationConnectors:- type: httpport: 8081idleTimeout: 10 secondsadminConnectors:- type: httpport: 8082shiro:iniConfigs: ["classpath:shiro_allow_all.ini"]dataSourceFactory:driverClass: com.mysql.jdbc.Driveruser: airpalpassword: passwdurl: jdbc:mysql://localhost:3306/airpalflywayFactory:locations: ["classpath:db.migration.common", "classpath:db.migration.mysql"]# The URL to the Presto coordinator.prestoCoordinator: http://prestoCoor:9098

数据库初始化

java -Duser.timezone=UTC -cp build/libs/airpal-*-all.jar com.airbnb.airpal.AirpalApplication db migrate reference.yml

直接启动Airpal:

java -server -Duser.timezone=UTC -cp build/libs/airpal-*-all.jar com.airbnb.airpal.AirpalApplication server reference.yml

通过访问 IP:8081 即可访问进在线查询

4 总结

Presto的强大之处不止于此,这里只是简单演示通过Presto来提高对HIve的查询效率,还有更多的功能需要探索,可以参考官网的文档

注:笔者能力有限有说的不对的地方希望大家能够指出,也希望多多交流!

这篇关于[喵咪大数据]Presto查询引擎的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1017557

相关文章

MySQL查询JSON数组字段包含特定字符串的方法

《MySQL查询JSON数组字段包含特定字符串的方法》在MySQL数据库中,当某个字段存储的是JSON数组,需要查询数组中包含特定字符串的记录时传统的LIKE语句无法直接使用,下面小编就为大家介绍两种... 目录问题背景解决方案对比1. 精确匹配方案(推荐)2. 模糊匹配方案参数化查询示例使用场景建议性能优

mysql表操作与查询功能详解

《mysql表操作与查询功能详解》本文系统讲解MySQL表操作与查询,涵盖创建、修改、复制表语法,基本查询结构及WHERE、GROUPBY等子句,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随... 目录01.表的操作1.1表操作概览1.2创建表1.3修改表1.4复制表02.基本查询操作2.1 SE

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

MySQL之InnoDB存储引擎中的索引用法及说明

《MySQL之InnoDB存储引擎中的索引用法及说明》:本文主要介绍MySQL之InnoDB存储引擎中的索引用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录1、背景2、准备3、正篇【1】存储用户记录的数据页【2】存储目录项记录的数据页【3】聚簇索引【4】二

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

XML重复查询一条Sql语句的解决方法

《XML重复查询一条Sql语句的解决方法》文章分析了XML重复查询与日志失效问题,指出因DTO缺少@Data注解导致日志无法格式化、空指针风险及参数穿透,进而引发性能灾难,解决方案为在Controll... 目录一、核心问题:从SQL重复执行到日志失效二、根因剖析:DTO断裂引发的级联故障三、解决方案:修复

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片