【如何衡量相机标定结果的精度】相机标定评价函数

2024-05-30 06:12

本文主要是介绍【如何衡量相机标定结果的精度】相机标定评价函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相关博客:

  1. 【鱼眼+普通相机】相机标定
  2. 【opencv】图像畸变校正

一、简介

常用的衡量相机标定结果精度的评价标准:

  1. 畸变矫正效果:标定过程中会估计畸变系数,畸变矫正的效果可以通过比较矫正前后的图像来评估。如果畸变得到有效矫正,说明标定过程较为成功。
  2. 重投影误差(Reprojection Error):这是最常用的评估相机标定精度的指标。它指的是在标定图像中检测到的特征点与通过相机参数投影得到的相应世界坐标点之间的距离。理想情况下,这个距离应该非常小。重投影误差越小,表明相机标定的精度越高。
  3. 反投影残差(Residual Error):这个指标衡量的是实际的三维点投影回二维图像平面后与观测到的二维点之间的距离。反投影残差较小,表明相机标定的精度较高。
  4. 参数估计误差:通过估计相机参数的标准误差,可以计算出参数估计的不确定性。这些标准误差可以用来计算置信区间,从而评估参数估计的准确性。

下面详细介绍一下重投影误差反投影残差

二 、重投影误差

定义:

重投影误差(Reprojection Error)是指在相机标定过程中,将三维世界坐标系中的点投影到二维图像平面上,然后与实际在图像中检测到的特征点之间的差异。这个差异通常用像素单位来衡量。

计算方法:

检测特征点:首先,在标定图像中检测到的特征点(通常是角点或棋盘格的交点)。
投影三维点:使用标定过程中估计出的相机内参(焦距、主点坐标)和畸变系数,将三维世界坐标系中的点投影到二维图像平面上。
计算误差:对于每个投影点,计算其与实际检测到的特征点之间的距离(通常是欧氏距离)。
求平均误差:对所有标定图像中的特征点,计算它们的重投影误差,然后求取平均值或中位数。

影响因素:

特征点检测的准确性:如果特征点检测不准确,会导致较大的重投影误差。
相机内参和畸变系数的估计精度:这些参数的准确估计对重投影误差有直接影响。
标定图像的数量和质量:标定图像越多,覆盖的视野越广,通常可以获得更准确的相机参数估计。
标定板的位姿:标定板在图像中的位姿应该多样化,以确保相机参数的全面估计。

优化方法:

提高特征点检测精度:使用更先进的算法或提高图像质量来提高特征点检测的准确性。
增加标定图像数量:收集更多的标定图像,特别是从不同角度和位置拍摄的图像。
优化标定算法:使用更先进的标定算法,如基于非线性优化的方法,来提高参数估计的精度。
标定板设计:设计易于特征点提取的标定板,如黑白相间的棋盘格或圆点图案。
结果解释:
误差较小:如果平均重投影误差很小(例如小于一个像素),通常认为相机标定是成功的。
误差较大:如果误差较大,可能需要重新审视标定过程,检查是否有误检测的特征点、标定图像质量是否足够高,或者标定算法是否需要调整。

代码:

# 计算标定的总重投影误差
total_reproj_error = 0
for i in range(len(object_points)):projected_imgpoints, _ = cv2.projectPoints(object_points[i], rvecs[i], tvecs[i], camera_matrix, distortion_coeffs)error_per_image = np.abs(corners[i] - projected_imgpoints.reshape(-1, 2)).reshape(-1)total_reproj_error += error_per_image.mean()average_reproj_error = total_reproj_error / len(corners)print(f"Average Reprojection Error: {average_reproj_error:.4f} pixels")

三、反投影残差

反投影残差(Residual Error)是评估相机标定精度的一个重要指标,它衡量的是三维空间中的物理点与其通过相机模型投影到二维图像平面上的点之间的差异。在相机标定的过程中,我们的目标是找到相机的内参(包括焦距、主点坐标等)和畸变系数,使得三维点的投影尽可能准确地对应到图像上的特征点。

概念:

  • 三维到二维的投影:在相机标定中,我们通常知道一些三维空间中点的世界坐标,并且这些点在图像上被观测到(通常是通过特征点检测得到的)。使用相机模型,我们可以将这些三维点投影到图像平面上。
  • 残差:反投影残差是指实际观测到的特征点位置与通过相机模型从三维坐标投影得到的位置之间的差异。

计算方法:

收集三维点的世界坐标:这些点通常位于一个标定板上,它们在三维空间中的位置是已知的。
使用相机模型进行投影:根据标定得到的相机内参和畸变系数,将三维世界坐标投影到图像平面上。
计算残差:对于每个三维点,计算其投影点与实际观测到的特征点之间的距离(通常是欧氏距离)。
求总残差或平均残差:对所有标定点,计算总残差或平均残差。

影响因素:

相机内参的准确性:包括焦距、主点坐标等,这些参数的准确性直接影响投影的准确性。
畸变系数的准确性:畸变系数用于矫正镜头畸变,如果不准确,会导致投影误差。
三维点的世界坐标的准确性:如果标定板上的点的世界坐标不准确,也会影响反投影残差。
特征点检测的准确性:图像上的特征点如果检测不准确,同样会影响残差的计算。

优化方法:

改进特征点检测算法:使用更准确的算法来检测图像上的特征点。
使用更精确的标定板:确保标定板上的三维点的世界坐标测量准确。
优化相机标定算法:采用非线性优化算法来更精确地估计相机参数。
增加标定图像的数量和多样性:使用多个角度和条件下拍摄的图像,以获得更全面的相机模型。

结果解释:

  • 残差较小:如果反投影残差较小,说明相机标定的精度较高,相机模型能够准确地将三维点投影到图像平面上。
  • 残差较大:如果残差较大,则可能需要重新审视标定过程,检查是否有误检测的特征点、标定图像质量是否足够高,或者标定算法是否需要调整。
    反投影残差是一个重要的量化指标,它帮助我们了解相机标定的准确性,并指导我们进行必要的优化。在高精度要求的应用中,如机器视觉、三维重建等,最小化反投影残差是非常关键的。

代码:

# 计算反投影残差
total_residual = 0
for i in range(len(object_points)):# 将3D点投影到2Dimg_points, _ = cv2.projectPoints(object_points[i], rvecs[i], tvecs[i], camera_matrix, distortion_coeffs)# 计算残差for j in range(len(img_points)):residual = np.linalg.norm(img_points[j] - corners[i][j].reshape(2))total_residual += residualaverage_residual = total_residual / (len(object_points) * len(corners))print(f"Total Residual: {total_residual}")
print(f"Average Residual: {average_residual}")

三、两者的区别

重投影误差(Reprojection Error)和反投影残差(Residual Error)都是衡量相机标定精度的指标,但它们的定义和计算方法有所不同。

  • 重投影误差关注的是将三维点投影到二维图像平面上后与实际观测点的偏差。
  • 反投影残差关注的是将二维图像点反投影到三维空间后与实际三维点的偏差。

重投影误差更常用于标定过程中相机参数的优化,而反投影残差则更多用于评估标定结果的准确性

这篇关于【如何衡量相机标定结果的精度】相机标定评价函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1015785

相关文章

Mybatis对MySQL if 函数的不支持问题解读

《Mybatis对MySQLif函数的不支持问题解读》接手项目后,为了实现多租户功能,引入了Mybatis-plus,发现之前运行正常的SQL语句报错,原因是Mybatis不支持MySQL的if函... 目录MyBATis对mysql if 函数的不支持问题描述经过查询网上搜索资料找到原因解决方案总结Myb

Python容器转换与共有函数举例详解

《Python容器转换与共有函数举例详解》Python容器是Python编程语言中非常基础且重要的概念,它们提供了数据的存储和组织方式,下面:本文主要介绍Python容器转换与共有函数的相关资料,... 目录python容器转换与共有函数详解一、容器类型概览二、容器类型转换1. 基本容器转换2. 高级转换示

pandas使用apply函数给表格同时添加多列

《pandas使用apply函数给表格同时添加多列》本文介绍了利用Pandas的apply函数在DataFrame中同时添加多列,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录一、Pandas使用apply函数给表格同时添加多列二、应用示例一、Pandas使用apply函

Python中Namespace()函数详解

《Python中Namespace()函数详解》Namespace是argparse模块提供的一个类,用于创建命名空间对象,它允许通过点操作符访问数据,比字典更易读,在深度学习项目中常用于加载配置、命... 目录1. 为什么使用 Namespace?2. Namespace 的本质是什么?3. Namesp

MySQL中如何求平均值常见实例(AVG函数详解)

《MySQL中如何求平均值常见实例(AVG函数详解)》MySQLavg()是一个聚合函数,用于返回各种记录中表达式的平均值,:本文主要介绍MySQL中用AVG函数如何求平均值的相关资料,文中通过代... 目录前言一、基本语法二、示例讲解1. 计算全表平均分2. 计算某门课程的平均分(例如:Math)三、结合

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数

Python中的sort方法、sorted函数与lambda表达式及用法详解

《Python中的sort方法、sorted函数与lambda表达式及用法详解》文章对比了Python中list.sort()与sorted()函数的区别,指出sort()原地排序返回None,sor... 目录1. sort()方法1.1 sort()方法1.2 基本语法和参数A. reverse参数B.

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返