Python高层解雇和客户活跃度量化不确定性模型

2024-05-30 05:36

本文主要是介绍Python高层解雇和客户活跃度量化不确定性模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯量化不确定性模型:🖊模型检测短信编写者行为变化 | 🖊确定(商业领域中)竞争性替代方案 | 🖊确定作弊供词真实比例 | 🖊学生考试作弊 | 🖊确定零部件损坏导致的灾难事故原因 | 🖊马尔可夫链蒙特卡罗算法先验-后验范式可视化 | 🖊聚类寻找信息隐藏源头 | 🖊模型确定和纠正虚假商品星评 | 🖊客户商品价格优化呈现 | 🖊星系位置和椭圆率模拟 | 🖊最大化赌场奖金策略 | 🖊证券分析。

🎯动态分析和常微分方程推理流感传播 | 🎯高层领导被解雇模型预测 | 🎯客户活跃度模型预测 | 🎯热饮冷却非线性模型动态分析 | 🎯多级回归和后分层预测公众人物角逐 | 🎯模型分析专业人士对比机器学习工具的优劣​ | 🎯销售领域利润率建模 | 🎯模型分析定位无线网络用户位置。

🍇Python贝叶斯推理

贝叶斯推理是一种找出变量分布的方法(例如高度 h h h 的分布)。贝叶斯推理的有趣特征是,统计学家(或数据科学家)可以利用他们的先验知识作为改进我们对分布情况的猜测的手段。贝叶斯推理依赖于贝叶斯统计的主要公式:贝叶斯定理。贝叶斯定理接受我们对分布的假设,即新的数据,并输出更新后的分布。对于数据科学,贝叶斯定理通常表示如下:
P ( θ ∣ Data  ) = P ( Data  ∣ θ ) ∗ P ( θ ) P ( Data  ) P(\theta \mid \text { Data })=\frac{P(\text { Data } \mid \theta) * P(\theta)}{P(\text { Data })} P(θ Data )=P( Data )P( Data θ)P(θ)

  • P ( θ ∣ D a t a ) P(\theta \mid D a t a) P(θData) 后验
  • P ( P( P( Data ∣ θ ) \mid \theta) θ) 似然
  • P ( θ ) P(\theta) P(θ) 先验
  • P ( P( P( Data ) ) ) 事实

我们可以从贝叶斯定理中看出,先验是一个概率:P(θ)。首先,让我们深入研究一下“θ”的含义。θ 通常表示为我们对最能描述我们试图研究的变量的模型的假设。让我们回到身高的例子。根据背景知识和常识,我们推断出身高在一个班级中呈正态分布。正式来说:
h ∼ N ( μ , σ ) h \sim N (\mu, \sigma) hN(μ,σ)
其中 N N N表示正态分布, μ \mu μ表示平均值, σ \sigma σ表示标准差。

现在,我们的先验并不完全是上面的表达式。相反,它是我们对每个参数 μ \mu μ σ \sigma σ 如何分布的假设。请注意,这就是贝叶斯统计的定义特征的体现:我们如何找到这些参数的分布?有趣的是,我们根据先验知识“编造”它们。如果我们的先验知识很少,我们可以选择一个非常无信息的先验,以免使过程产生偏差。例如,我们可以定义平均高度 μ \mu μ 介于 1.65 m 1.65 m 1.65m 1.8 m 1.8 m 1.8m 之间。如果我们想要一个无信息的先验,我们可以说 μ \mu μ 沿着该区间均匀分布。相反,如果我们认为平均高度在某种程度上偏向于更接近 1.65 m 1.65 m 1.65m 而不是 1.8 m 1.8 m 1.8m 的值,我们可以定义 μ \mu μ 服从 beta 分布,由“超”参数 α \alpha α 定义和 β \beta β。我们可以看看下面这些选项:

import scipy.stats as sts
import numpy as np
import matplotlib.pyplot as pltmu = np.linspace(1.65, 1.8, num = 50)
test = np.linspace(0, 2)
uniform_dist = sts.uniform.pdf(mu) + 1 
uniform_dist = uniform_dist/uniform_dist.sum() 
beta_dist = sts.beta.pdf(mu, 2, 5, loc = 1.65, scale = 0.2) 
beta_dist = beta_dist/beta_dist.sum()
plt.plot(mu, beta_dist, label = 'Beta Dist')
plt.plot(mu, uniform_dist, label = 'Uniform Dist')
plt.xlabel("Value of $\mu$ in meters")
plt.ylabel("Probability density")
plt.legend()

请注意 y 轴如何为我们提供“概率密度”,即我们认为真正的 μ \mu μ x x x 轴上的概率密度。另外,请注意,β 分布和均匀分布会导致我们对 μ \mu μ 的值可能得出的不同结论。如果我们选择均匀分布,我们就表示我们不倾向于判断 μ \mu μ 是否接近我们范围内的任何值,我们只是认为它位于其中的某个位置。如果我们选择 beta 分布,我们相当确定 μ \mu μ 的“真实”值介于 1.68 m 1.68 m 1.68m 1.72 m 1.72 m 1.72m 之间,如蓝线峰值所示。

请注意,我们正在讨论 μ \mu μ 的先验,但我们的模型实际上有两个参数: N ( μ , σ ) N (\mu, \sigma) N(μ,σ)。一般来说,我们也可以定义 σ \sigma σ 上的先验。然而,如果我们对 σ \sigma σ 的猜测感到幸运,或者如果我们想为了示例而简化过程,我们可以将 σ \sigma σ 设置为固定值,例如 0.1 m 0.1 m 0.1m

似然表示为 P ( P ( P( Data ∣ θ ) \mid \theta) θ)。在这种情况下,“数据”将是高度的观测值。假设我们要测量一名随机挑选的学生,他们的身高为 1.7m。考虑到有了这个数据,我们现在可以了解 θ \theta θ 的每个选项有多好。我们通过以下问题来做到这一点:如果 θ \theta θ 的一个特定选项(称为 θ 1 \theta 1 θ1)是真实的,那么我们观察到 1.7 m 1.7 m 1.7m 高度的“可能性”有多大? θ 2 \theta 2 θ2 怎么样:如果 θ 2 \theta 2 θ2 是“正确”模型,观察到 1.7 m 1.7 m 1.7m 高度的可能性有多大?

然而,就我们目前的目的而言,我们正在改变分布/模型本身。这意味着我们的 x x x 轴实际上将具有变量 μ \mu μ 的不同可能性,而我们的 y y y 轴将具有每种可能性的概率密度。看看下面的代码,它代表了我们的似然函数及其可视化:

def likelihood_func(datum, mu):likelihood_out = sts.norm.pdf(datum, mu, scale = 0.1) return likelihood_out/likelihood_out.sum()likelihood_out = likelihood_func(1.7, mu)plt.plot(mu, likelihood_out)
plt.title("Likelihood of $\mu$ given observation 1.7m")
plt.ylabel("Probability Density/Likelihood")
plt.xlabel("Value of $\mu$")
plt.show()

一些统计学家将 P ( P ( P( Data ) ) ) 称为“证据”。这个变量的含义非常简单:它是产生价值数据的概率。然而,这很难直接计算。值得庆幸的是,我们有一个好办法。考虑以下方程:
∫ P ( Data  ∣ θ ) ∗ P ( θ ) d θ = P ( Data  ) \int P(\text { Data } \mid \theta) * P(\theta) d \theta=P(\text { Data }) P( Data θ)P(θ)dθ=P( Data )
贝叶斯定理的右侧 P ( θ ∣ P (\theta \mid P(θ Data) 称为“后验”。这是我们对数据如何分布的后验理解,因为我们目睹了数据,并且我们有先验知识。我们如何得到后验呢?回到方程:
P ( θ ∣ Data  ) = P ( Data  ∣ θ ) ∗ P ( θ ) P ( Data  ) P(\theta \mid \text { Data })=\frac{P(\text { Data } \mid \theta) * P(\theta)}{P(\text { Data })} P(θ Data )=P( Data )P( Data θ)P(θ)
那么,第一步是将似然度 (P(Data ∣ θ ) ) \mid \theta)) θ)) 与先验 ( P ( θ ) ) ( P (\theta)) (P(θ)) 相乘:

import scipy as spunnormalized_posterior = likelihood_out * uniform_dist
plt.plot(mu, unnormalized_posterior)
plt.xlabel("$\mu$ in meters")
plt.ylabel("Unnormalized Posterior")
plt.show()

👉参阅一:计算思维

👉参阅二:亚图跨际

这篇关于Python高层解雇和客户活跃度量化不确定性模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1015709

相关文章

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re