Python高层解雇和客户活跃度量化不确定性模型

2024-05-30 05:36

本文主要是介绍Python高层解雇和客户活跃度量化不确定性模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

🎯量化不确定性模型:🖊模型检测短信编写者行为变化 | 🖊确定(商业领域中)竞争性替代方案 | 🖊确定作弊供词真实比例 | 🖊学生考试作弊 | 🖊确定零部件损坏导致的灾难事故原因 | 🖊马尔可夫链蒙特卡罗算法先验-后验范式可视化 | 🖊聚类寻找信息隐藏源头 | 🖊模型确定和纠正虚假商品星评 | 🖊客户商品价格优化呈现 | 🖊星系位置和椭圆率模拟 | 🖊最大化赌场奖金策略 | 🖊证券分析。

🎯动态分析和常微分方程推理流感传播 | 🎯高层领导被解雇模型预测 | 🎯客户活跃度模型预测 | 🎯热饮冷却非线性模型动态分析 | 🎯多级回归和后分层预测公众人物角逐 | 🎯模型分析专业人士对比机器学习工具的优劣​ | 🎯销售领域利润率建模 | 🎯模型分析定位无线网络用户位置。

🍇Python贝叶斯推理

贝叶斯推理是一种找出变量分布的方法(例如高度 h h h 的分布)。贝叶斯推理的有趣特征是,统计学家(或数据科学家)可以利用他们的先验知识作为改进我们对分布情况的猜测的手段。贝叶斯推理依赖于贝叶斯统计的主要公式:贝叶斯定理。贝叶斯定理接受我们对分布的假设,即新的数据,并输出更新后的分布。对于数据科学,贝叶斯定理通常表示如下:
P ( θ ∣ Data  ) = P ( Data  ∣ θ ) ∗ P ( θ ) P ( Data  ) P(\theta \mid \text { Data })=\frac{P(\text { Data } \mid \theta) * P(\theta)}{P(\text { Data })} P(θ Data )=P( Data )P( Data θ)P(θ)

  • P ( θ ∣ D a t a ) P(\theta \mid D a t a) P(θData) 后验
  • P ( P( P( Data ∣ θ ) \mid \theta) θ) 似然
  • P ( θ ) P(\theta) P(θ) 先验
  • P ( P( P( Data ) ) ) 事实

我们可以从贝叶斯定理中看出,先验是一个概率:P(θ)。首先,让我们深入研究一下“θ”的含义。θ 通常表示为我们对最能描述我们试图研究的变量的模型的假设。让我们回到身高的例子。根据背景知识和常识,我们推断出身高在一个班级中呈正态分布。正式来说:
h ∼ N ( μ , σ ) h \sim N (\mu, \sigma) hN(μ,σ)
其中 N N N表示正态分布, μ \mu μ表示平均值, σ \sigma σ表示标准差。

现在,我们的先验并不完全是上面的表达式。相反,它是我们对每个参数 μ \mu μ σ \sigma σ 如何分布的假设。请注意,这就是贝叶斯统计的定义特征的体现:我们如何找到这些参数的分布?有趣的是,我们根据先验知识“编造”它们。如果我们的先验知识很少,我们可以选择一个非常无信息的先验,以免使过程产生偏差。例如,我们可以定义平均高度 μ \mu μ 介于 1.65 m 1.65 m 1.65m 1.8 m 1.8 m 1.8m 之间。如果我们想要一个无信息的先验,我们可以说 μ \mu μ 沿着该区间均匀分布。相反,如果我们认为平均高度在某种程度上偏向于更接近 1.65 m 1.65 m 1.65m 而不是 1.8 m 1.8 m 1.8m 的值,我们可以定义 μ \mu μ 服从 beta 分布,由“超”参数 α \alpha α 定义和 β \beta β。我们可以看看下面这些选项:

import scipy.stats as sts
import numpy as np
import matplotlib.pyplot as pltmu = np.linspace(1.65, 1.8, num = 50)
test = np.linspace(0, 2)
uniform_dist = sts.uniform.pdf(mu) + 1 
uniform_dist = uniform_dist/uniform_dist.sum() 
beta_dist = sts.beta.pdf(mu, 2, 5, loc = 1.65, scale = 0.2) 
beta_dist = beta_dist/beta_dist.sum()
plt.plot(mu, beta_dist, label = 'Beta Dist')
plt.plot(mu, uniform_dist, label = 'Uniform Dist')
plt.xlabel("Value of $\mu$ in meters")
plt.ylabel("Probability density")
plt.legend()

请注意 y 轴如何为我们提供“概率密度”,即我们认为真正的 μ \mu μ x x x 轴上的概率密度。另外,请注意,β 分布和均匀分布会导致我们对 μ \mu μ 的值可能得出的不同结论。如果我们选择均匀分布,我们就表示我们不倾向于判断 μ \mu μ 是否接近我们范围内的任何值,我们只是认为它位于其中的某个位置。如果我们选择 beta 分布,我们相当确定 μ \mu μ 的“真实”值介于 1.68 m 1.68 m 1.68m 1.72 m 1.72 m 1.72m 之间,如蓝线峰值所示。

请注意,我们正在讨论 μ \mu μ 的先验,但我们的模型实际上有两个参数: N ( μ , σ ) N (\mu, \sigma) N(μ,σ)。一般来说,我们也可以定义 σ \sigma σ 上的先验。然而,如果我们对 σ \sigma σ 的猜测感到幸运,或者如果我们想为了示例而简化过程,我们可以将 σ \sigma σ 设置为固定值,例如 0.1 m 0.1 m 0.1m

似然表示为 P ( P ( P( Data ∣ θ ) \mid \theta) θ)。在这种情况下,“数据”将是高度的观测值。假设我们要测量一名随机挑选的学生,他们的身高为 1.7m。考虑到有了这个数据,我们现在可以了解 θ \theta θ 的每个选项有多好。我们通过以下问题来做到这一点:如果 θ \theta θ 的一个特定选项(称为 θ 1 \theta 1 θ1)是真实的,那么我们观察到 1.7 m 1.7 m 1.7m 高度的“可能性”有多大? θ 2 \theta 2 θ2 怎么样:如果 θ 2 \theta 2 θ2 是“正确”模型,观察到 1.7 m 1.7 m 1.7m 高度的可能性有多大?

然而,就我们目前的目的而言,我们正在改变分布/模型本身。这意味着我们的 x x x 轴实际上将具有变量 μ \mu μ 的不同可能性,而我们的 y y y 轴将具有每种可能性的概率密度。看看下面的代码,它代表了我们的似然函数及其可视化:

def likelihood_func(datum, mu):likelihood_out = sts.norm.pdf(datum, mu, scale = 0.1) return likelihood_out/likelihood_out.sum()likelihood_out = likelihood_func(1.7, mu)plt.plot(mu, likelihood_out)
plt.title("Likelihood of $\mu$ given observation 1.7m")
plt.ylabel("Probability Density/Likelihood")
plt.xlabel("Value of $\mu$")
plt.show()

一些统计学家将 P ( P ( P( Data ) ) ) 称为“证据”。这个变量的含义非常简单:它是产生价值数据的概率。然而,这很难直接计算。值得庆幸的是,我们有一个好办法。考虑以下方程:
∫ P ( Data  ∣ θ ) ∗ P ( θ ) d θ = P ( Data  ) \int P(\text { Data } \mid \theta) * P(\theta) d \theta=P(\text { Data }) P( Data θ)P(θ)dθ=P( Data )
贝叶斯定理的右侧 P ( θ ∣ P (\theta \mid P(θ Data) 称为“后验”。这是我们对数据如何分布的后验理解,因为我们目睹了数据,并且我们有先验知识。我们如何得到后验呢?回到方程:
P ( θ ∣ Data  ) = P ( Data  ∣ θ ) ∗ P ( θ ) P ( Data  ) P(\theta \mid \text { Data })=\frac{P(\text { Data } \mid \theta) * P(\theta)}{P(\text { Data })} P(θ Data )=P( Data )P( Data θ)P(θ)
那么,第一步是将似然度 (P(Data ∣ θ ) ) \mid \theta)) θ)) 与先验 ( P ( θ ) ) ( P (\theta)) (P(θ)) 相乘:

import scipy as spunnormalized_posterior = likelihood_out * uniform_dist
plt.plot(mu, unnormalized_posterior)
plt.xlabel("$\mu$ in meters")
plt.ylabel("Unnormalized Posterior")
plt.show()

👉参阅一:计算思维

👉参阅二:亚图跨际

这篇关于Python高层解雇和客户活跃度量化不确定性模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1015709

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及