SMS垃圾短信集F1指标分析

2024-05-29 18:12
文章标签 分析 指标 f1 垃圾 短信 sms

本文主要是介绍SMS垃圾短信集F1指标分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、任务

SMS垃圾短信集是一组为研究SMS垃圾短信而收集数据集合,每条短信有两个信息,分别是标签信息label,其中spam为垃圾短信,ham为正常短信。以及message信息为短信内容。现在有训练集,训练集保存在E:\自然语言处理\train.csv和测试集,测试集保存在E:\自然语言处理\test.csv。现在综合利用所学的文本预处理、特征提取、文本向量化等技术对其进行分析。建立机器学习模型,计算测试集上的F1指标,希望F1指标达到非常好的效果。

二、代码

使用SVC机器学习模型,Tfidf特征处理。

import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import f1_score
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import LabelEncoder
import re
import string# 1. 数据加载与预处理
train_data = pd.read_csv("E:\\自然语言处理\\train.csv")
test_data = pd.read_csv("E:\\自然语言处理\\test.csv")# 定义文本预处理函数
def preprocess_text(text):# 将文本转换为小写text = text.lower()# 去除标点符号text = text.translate(str.maketrans('', '', string.punctuation))# 去除数字text = re.sub(r'\d+', '', text)# 返回处理后的文本return text# 对训练集和测试集的文本进行预处理
train_data['message'] = train_data['message'].apply(preprocess_text)
test_data['message'] = test_data['message'].apply(preprocess_text)# 2. 特征提取与文本向量化
vectorizer = TfidfVectorizer()
X_train = vectorizer.fit_transform(train_data['message'])
X_test = vectorizer.transform(test_data['message'])# 对标签进行编码
label_encoder = LabelEncoder()
y_train = label_encoder.fit_transform(train_data['label'])
y_test = label_encoder.transform(test_data['label'])# 3. 建立机器学习模型
classifier = SVC(kernel='linear')# 4. 模型训练与评估
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)# 计算F1指标
f1 = f1_score(y_test, y_pred)print("F1 Score:", f1)

三、结果

F1 Score: 0.9469214437367303

本代码仅是抛砖引玉,希望诸君可以有其他更好的方法,比如使用GridSearchCV等等。当然我后续会分享其他代码解决上述问题

这篇关于SMS垃圾短信集F1指标分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1014270

相关文章

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑

Spring、Spring Boot、Spring Cloud 的区别与联系分析

《Spring、SpringBoot、SpringCloud的区别与联系分析》Spring、SpringBoot和SpringCloud是Java开发中常用的框架,分别针对企业级应用开发、快速开... 目录1. Spring 框架2. Spring Boot3. Spring Cloud总结1. Sprin

Spring 中 BeanFactoryPostProcessor 的作用和示例源码分析

《Spring中BeanFactoryPostProcessor的作用和示例源码分析》Spring的BeanFactoryPostProcessor是容器初始化的扩展接口,允许在Bean实例化前... 目录一、概览1. 核心定位2. 核心功能详解3. 关键特性二、Spring 内置的 BeanFactory

MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析

《MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析》本文将详细讲解MyBatis-Plus中的lambdaUpdate用法,并提供丰富的案例来帮助读者更好地理解和应... 目录深入探索MyBATis-Plus中Service接口的lambdaUpdate用法及示例案例背景

MyBatis-Plus中静态工具Db的多种用法及实例分析

《MyBatis-Plus中静态工具Db的多种用法及实例分析》本文将详细讲解MyBatis-Plus中静态工具Db的各种用法,并结合具体案例进行演示和说明,具有很好的参考价值,希望对大家有所帮助,如有... 目录MyBATis-Plus中静态工具Db的多种用法及实例案例背景使用静态工具Db进行数据库操作插入

Go使用pprof进行CPU,内存和阻塞情况分析

《Go使用pprof进行CPU,内存和阻塞情况分析》Go语言提供了强大的pprof工具,用于分析CPU、内存、Goroutine阻塞等性能问题,帮助开发者优化程序,提高运行效率,下面我们就来深入了解下... 目录1. pprof 介绍2. 快速上手:启用 pprof3. CPU Profiling:分析 C