基于双向长短时记忆网络的ECG心电信号识别(包括原始时域信号与时频域特征提取,MATLAB R2021B)

本文主要是介绍基于双向长短时记忆网络的ECG心电信号识别(包括原始时域信号与时频域特征提取,MATLAB R2021B),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

循环神经网络RNN,是一种链式结构,能够对连续输入的序列同时处理,且有不错的效果。RNN具有记忆功能且能够随时接受并处理输入数据,这得益于其特殊的连接方式,即神经元之间以一定的方向互相连接构成环,内部时序状态即时展现。RNN因这种特殊的结构在自然语言处理中得以广泛应用,尤其是在翻译、语音识别和图像处理等领域有更明显的优势。RNN网络结构能够利用历史信息的前提是距离不能太远,在距离较远时记忆效果不理想,同时梯度消失和梯度爆炸问题也会随之产生。

RNN模型理论上可以很好地解决序列问题,但是信息源经长途跋涉进行传输时梯度消失和梯度爆炸问题也不容忽视,这个问题随着输入序列的长度增加愈演愈烈。为了解决RNN的这一缺陷,随之衍生出了其变种网络模型,即长短期记忆网络模型LSTM,它是一种特殊的RNN模型,在一定程度上能很好的解决RNN模型所存在的问题,LSTM模型多了三个控制器,通过三个控制器解决了梯度问题。

LSTM模型所记忆的信息都来自于过去,为了充分获得未来信息,提出了能够更全面挖掘深层语义信息的BiLSTM。BiLSTM模型由两个不同方向的LSTM叠加构成,因此可以从两个方向同时得到信息,和LSTM相比较BiLSTM的信息提取能力更强。

图片

鉴于此,采用双向长短时记忆网络对ECG心电信号进行识别,运行环境为MATLAB R2021B,采用两种输入,一种是原始时域信号,一种是特征提取后的特征向量(瞬时频率特征[instantaneous frequency]和谱熵特征[Spectral entropy] ),原始时域信号输入的网络结构为:

layers = [ ...    sequenceInputLayer(1)    bilstmLayer(100,'OutputMode','last')    fullyConnectedLayer(2)    softmaxLayer    classificationLayer    ]

图片

特征提取后输入的网络结构为:

layers = [ ...    sequenceInputLayer(2)    bilstmLayer(100,'OutputMode','last')    fullyConnectedLayer(2)    softmaxLayer​​​​​​​    classificationLayer    ]

图片

图片

图片

图片

完整代码可通过知乎学术咨询获得.

工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

这篇关于基于双向长短时记忆网络的ECG心电信号识别(包括原始时域信号与时频域特征提取,MATLAB R2021B)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1013904

相关文章

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

csu1329(双向链表)

题意:给n个盒子,编号为1到n,四个操作:1、将x盒子移到y的左边;2、将x盒子移到y的右边;3、交换x和y盒子的位置;4、将所有的盒子反过来放。 思路分析:用双向链表解决。每个操作的时间复杂度为O(1),用数组来模拟链表,下面的代码是参考刘老师的标程写的。 代码如下: #include<iostream>#include<algorithm>#include<stdio.h>#

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

ASIO网络调试助手之一:简介

多年前,写过几篇《Boost.Asio C++网络编程》的学习文章,一直没机会实践。最近项目中用到了Asio,于是抽空写了个网络调试助手。 开发环境: Win10 Qt5.12.6 + Asio(standalone) + spdlog 支持协议: UDP + TCP Client + TCP Server 独立的Asio(http://www.think-async.com)只包含了头文件,不依

poj 3181 网络流,建图。

题意: 农夫约翰为他的牛准备了F种食物和D种饮料。 每头牛都有各自喜欢的食物和饮料,而每种食物和饮料都只能分配给一头牛。 问最多能有多少头牛可以同时得到喜欢的食物和饮料。 解析: 由于要同时得到喜欢的食物和饮料,所以网络流建图的时候要把牛拆点了。 如下建图: s -> 食物 -> 牛1 -> 牛2 -> 饮料 -> t 所以分配一下点: s  =  0, 牛1= 1~

poj 3068 有流量限制的最小费用网络流

题意: m条有向边连接了n个仓库,每条边都有一定费用。 将两种危险品从0运到n-1,除了起点和终点外,危险品不能放在一起,也不能走相同的路径。 求最小的费用是多少。 解析: 抽象出一个源点s一个汇点t,源点与0相连,费用为0,容量为2。 汇点与n - 1相连,费用为0,容量为2。 每条边之间也相连,费用为每条边的费用,容量为1。 建图完毕之后,求一条流量为2的最小费用流就行了

poj 2112 网络流+二分

题意: k台挤奶机,c头牛,每台挤奶机可以挤m头牛。 现在给出每只牛到挤奶机的距离矩阵,求最小化牛的最大路程。 解析: 最大值最小化,最小值最大化,用二分来做。 先求出两点之间的最短距离。 然后二分匹配牛到挤奶机的最大路程,匹配中的判断是在这个最大路程下,是否牛的数量达到c只。 如何求牛的数量呢,用网络流来做。 从源点到牛引一条容量为1的边,然后挤奶机到汇点引一条容量为m的边

配置InfiniBand (IB) 和 RDMA over Converged Ethernet (RoCE) 网络

配置InfiniBand (IB) 和 RDMA over Converged Ethernet (RoCE) 网络 服务器端配置 在服务器端,你需要确保安装了必要的驱动程序和软件包,并且正确配置了网络接口。 安装 OFED 首先,安装 Open Fabrics Enterprise Distribution (OFED),它包含了 InfiniBand 所需的驱动程序和库。 sudo

matlab读取NC文件(含group)

matlab读取NC文件(含group): NC文件数据结构: 代码: % 打开 NetCDF 文件filename = 'your_file.nc'; % 替换为你的文件名% 使用 netcdf.open 函数打开文件ncid = netcdf.open(filename, 'NC_NOWRITE');% 查看文件中的组% 假设我们想读取名为 "group1" 的组groupName

【机器学习】高斯网络的基本概念和应用领域

引言 高斯网络(Gaussian Network)通常指的是一个概率图模型,其中所有的随机变量(或节点)都遵循高斯分布 文章目录 引言一、高斯网络(Gaussian Network)1.1 高斯过程(Gaussian Process)1.2 高斯混合模型(Gaussian Mixture Model)1.3 应用1.4 总结 二、高斯网络的应用2.1 机器学习2.2 统计学2.3