数据分析-day04-pandas-dataFrame中group by分组与聚合

2024-05-29 09:18

本文主要是介绍数据分析-day04-pandas-dataFrame中group by分组与聚合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

源数据:

分组后:

grouped = df.groupby(by="columns_name")

grouped是一个DataFrameGroupBy对象,是可迭代的

grouped中的每一个元素是一个元组 ,元组里面是(索引(分组的值),分组之后的DataFrame)

#!usr/bin/env python
#-*- coding:utf-8 _*-
'''
@author:Administrator
@file: pandas_dataframe_group_demo.py
@time: 2020-01-05 上午 9:27
'''
import pandas as pd;
import numpy as np
from matplotlib import pyplot as plt
df=pd.read_csv("../data/starbucks_store_worldwide.csv");
df=df.head(1000);
#以country分组,组成类似map的数据类型,key=国家名称,values=dataframe(关于key代表国家的所有信息)
grouped = df.groupby(by="Country");
print(grouped)
#遍历查看内容for m,n in grouped:print(m)print("===")print(n)#查看所有等于cA的数据
r=df[df["Country"]=="CA"];
#print(r)
#调用聚合方法
country_count = grouped["Brand"].count()
print(country_count)
print(country_count["AE"])
#统计中国每个省店铺的数量
china_data = df[df["Country"] =="CN"]
grouped = china_data.groupby(by="State/Province")["Brand"].count()
print(grouped)
#数据按照多个条件进行分组,返回Series
grouped = df["Brand"].groupby(by=[df["Country"],df["State/Province"]]).count()
print(grouped)
print(type(grouped))
#数据按照多个条件进行分组,返回DataFrame,df["Brand"]再嵌套一层[],变为df[["Brand"]]
grouped1 = df[["Brand"]].groupby(by=[df["Country"],df["State/Province"]]).count()
grouped2= df.groupby(by=[df["Country"],df["State/Province"]])[["Brand"]].count()
grouped3 = df.groupby(by=[df["Country"],df["State/Province"]]).count()[["Brand"]]

这篇关于数据分析-day04-pandas-dataFrame中group by分组与聚合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1013259

相关文章

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

matlab读取NC文件(含group)

matlab读取NC文件(含group): NC文件数据结构: 代码: % 打开 NetCDF 文件filename = 'your_file.nc'; % 替换为你的文件名% 使用 netcdf.open 函数打开文件ncid = netcdf.open(filename, 'NC_NOWRITE');% 查看文件中的组% 假设我们想读取名为 "group1" 的组groupName

Solr 使用Facet分组过程中与分词的矛盾解决办法

对于一般查询而言  ,  分词和存储都是必要的  .  比如  CPU  类型  ”Intel  酷睿  2  双核  P7570”,  拆分成  ”Intel”,”  酷睿  ”,”P7570”  这样一些关键字并分别索引  ,  可能提供更好的搜索体验  .  但是如果将  CPU  作为 Facet  字段  ,  最好不进行分词  .  这样就造成了矛盾  ,  解决方法

Jenkins构建Maven聚合工程,指定构建子模块

一、设置单独编译构建子模块 配置: 1、Root POM指向父pom.xml 2、Goals and options指定构建模块的参数: mvn -pl project1/project1-son -am clean package 单独构建project1-son项目以及它所依赖的其它项目。 说明: mvn clean package -pl 父级模块名/子模块名 -am参数

Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

**爬取豆瓣电影信息,分析近年电影行业的发展情况** 本文是完整的数据分析展现,代码有完整版,包含豆瓣电影爬取的具体方式【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】   最近MBA在学习《商业数据分析》,大实训作业给了数据要进行数据分析,所以先拿豆瓣电影练练手,网络上爬取豆瓣电影TOP250较多,但对于豆瓣电影全数据的爬取教程很少,所以我自己做一版。 目

【Python从入门到进阶】64、Pandas如何实现数据的Concat合并

接上篇《63.Pandas如何实现数据的Merge》 上一篇我们学习了Pandas如何实现数据的Merge,本篇我们来继续学习Pandas如何实现数据的Concat合并。 一、引言 在数据处理过程中,经常需要将多个数据集合并为一个统一的数据集,以便进行进一步的分析或建模。这种需求在多种场景下都非常常见,比如合并不同来源的数据集以获取更全面的信息、将时间序列数据按时间顺序拼接起来以观察长期趋势等

AI辅助编程里的 Atom Group 的概念和使用

背景 在我们实际的开发当中,一个需求往往会涉及到多个文件修改,而需求也往往有相似性。 举个例子,我经常需要在 auto-coder中需要添加命令行参数,通常是这样的: /coding 添加一个新的命令行参数 --chat_model 默认值为空 实际上这个需求涉及到以下文件列表: /Users/allwefantasy/projects/auto-coder/src/autocoder/auto

ElasticSearch的DSL查询⑤(ES数据聚合、DSL语法数据聚合、RestClient数据聚合)

目录 一、数据聚合 1.1 DSL实现聚合 1.1.1 Bucket聚合  1.1.2 带条件聚合 1.1.3 Metric聚合 1.1.4 总结 2.1 RestClient实现聚合 2.1.1 Bucket聚合 2.1.2 带条件聚合 2.2.3 Metric聚合 一、数据聚合 聚合(aggregations)可以让我们极其方便的实现对数据的统计、分析、运算。例如:

七、Maven继承和聚合关系、及Maven的仓库及查找顺序

1.继承   2.聚合   3.Maven的仓库及查找顺序