数据分析-day04-pandas-dataFrame中group by分组与聚合

2024-05-29 09:18

本文主要是介绍数据分析-day04-pandas-dataFrame中group by分组与聚合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

源数据:

分组后:

grouped = df.groupby(by="columns_name")

grouped是一个DataFrameGroupBy对象,是可迭代的

grouped中的每一个元素是一个元组 ,元组里面是(索引(分组的值),分组之后的DataFrame)

#!usr/bin/env python
#-*- coding:utf-8 _*-
'''
@author:Administrator
@file: pandas_dataframe_group_demo.py
@time: 2020-01-05 上午 9:27
'''
import pandas as pd;
import numpy as np
from matplotlib import pyplot as plt
df=pd.read_csv("../data/starbucks_store_worldwide.csv");
df=df.head(1000);
#以country分组,组成类似map的数据类型,key=国家名称,values=dataframe(关于key代表国家的所有信息)
grouped = df.groupby(by="Country");
print(grouped)
#遍历查看内容for m,n in grouped:print(m)print("===")print(n)#查看所有等于cA的数据
r=df[df["Country"]=="CA"];
#print(r)
#调用聚合方法
country_count = grouped["Brand"].count()
print(country_count)
print(country_count["AE"])
#统计中国每个省店铺的数量
china_data = df[df["Country"] =="CN"]
grouped = china_data.groupby(by="State/Province")["Brand"].count()
print(grouped)
#数据按照多个条件进行分组,返回Series
grouped = df["Brand"].groupby(by=[df["Country"],df["State/Province"]]).count()
print(grouped)
print(type(grouped))
#数据按照多个条件进行分组,返回DataFrame,df["Brand"]再嵌套一层[],变为df[["Brand"]]
grouped1 = df[["Brand"]].groupby(by=[df["Country"],df["State/Province"]]).count()
grouped2= df.groupby(by=[df["Country"],df["State/Province"]])[["Brand"]].count()
grouped3 = df.groupby(by=[df["Country"],df["State/Province"]]).count()[["Brand"]]

这篇关于数据分析-day04-pandas-dataFrame中group by分组与聚合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1013259

相关文章

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

Java反射实现多属性去重与分组功能

《Java反射实现多属性去重与分组功能》在Java开发中,​​List是一种非常常用的数据结构,通常我们会遇到这样的问题:如何处理​​List​​​中的相同字段?无论是去重还是分组,合理的操作可以提高... 目录一、开发环境与基础组件准备1.环境配置:2. 代码结构说明:二、基础反射工具:BeanUtils

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

mysql中的group by高级用法详解

《mysql中的groupby高级用法详解》MySQL中的GROUPBY是数据聚合分析的核心功能,主要用于将结果集按指定列分组,并结合聚合函数进行统计计算,本文给大家介绍mysql中的groupby... 目录一、基本语法与核心功能二、基础用法示例1. 单列分组统计2. 多列组合分组3. 与WHERE结合使

Python Pandas高效处理Excel数据完整指南

《PythonPandas高效处理Excel数据完整指南》在数据驱动的时代,Excel仍是大量企业存储核心数据的工具,Python的Pandas库凭借其向量化计算、内存优化和丰富的数据处理接口,成为... 目录一、环境搭建与数据读取1.1 基础环境配置1.2 数据高效载入技巧二、数据清洗核心战术2.1 缺失

Java如何根据文件名前缀自动分组图片文件

《Java如何根据文件名前缀自动分组图片文件》一大堆文件(比如图片)堆在一个目录下,它们的命名规则遵循一定的格式,混在一起很难管理,所以本文小编就和大家介绍一下如何使用Java根据文件名前缀自动分组图... 目录需求背景分析思路实现代码输出结果知识扩展需求一大堆文件(比如图片)堆在一个目录下,它们的命名规

Pandas进行周期与时间戳转换的方法

《Pandas进行周期与时间戳转换的方法》本教程将深入讲解如何在pandas中使用to_period()和to_timestamp()方法,完成时间戳与周期之间的转换,并结合实际应用场景展示这些方法的... 目录to_period() 时间戳转周期基本操作应用示例to_timestamp() 周期转时间戳基

pandas DataFrame keys的使用小结

《pandasDataFramekeys的使用小结》pandas.DataFrame.keys()方法返回DataFrame的列名,类似于字典的键,本文主要介绍了pandasDataFrameke... 目录Pandas2.2 DataFrameIndexing, iterationpandas.DataF