先验概率、后验概率、似然函数的理解

2024-05-28 20:08

本文主要是介绍先验概率、后验概率、似然函数的理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注释:最近一直看到先验后验的说法,一直不懂,这次查了资料记录一下。

1.先验和后验的区别:

A.简单的了解两个概率的含义

  先验概率可理解为统计概率,后验概率可理解为条件概率。

  -----------------------------------------------------------------------------------------------------------  设定背景:酒至半酣,忽阴云漠漠,骤雨将至。

  情景一:    “天不会下雨的,历史上这里下雨的概率是20%”----先验概率    “但阴云漠漠时,下雨的概率是80%”----后验概率

情景二: “飞飞别急着走啊,历史上酒桌上死人的概率只有5%“----先验概率 ”可他是曹操啊,梦里都杀人“----后验概率
B.区别两者的含义

我们来看一下贝叶斯统计的一个有趣的案例案例:假如你是一个女生, 你在你的老公书包里发现了一个别的女人的内裤那么他出轨的概率是多少。

图:贝爷居然能解决家庭纠纷?

稍微熟悉这个问题的人对会知道做这个题目你要先考察基率,你要把这个问题分解为几步考虑:

1,你老公在没有任何概率情况下出轨的概率是多少? 如果他是个天生老实巴交的程序员或者风流倜傥的CEO, 那么显然不该一视同仁

2,如果你老公出轨了, 那么他有一条内裤的概率是多少, 如果他没出轨, 出现这个情况概率有多少? 想想一般人即使出轨也不会犯那么傻的错误, 会不会有没出轨而出现内裤的状况? 有没有可能是某个暗恋你老公的人的陷害?

3, 根据1 和2求解最终问题,这才是拥有大学数学能力的你该做的分析。

在这里1其实就是先验概率P(A),而2是条件概率P(B|A), 最终得到3后验概率P(A|B)。这三种即是贝叶斯统计的三要素。

基于条件概率的贝叶斯定律数学方程极为简单:

A即出轨, B是内裤出现, 你得到1,2,就可以根据公式算出根据根据内裤出现判断出轨的概率。

先验概率在贝叶斯统计中具有重要意义,首先先验概率即我们在取得证据之前所指定的概率P(A), 这个值通常是根据我们之前的常识,带有一定的主观色彩。 就像刚刚说的出轨的问题, 你的先验概率代表了你对你男人的信心。

有一个非常有趣的现象是如果我们的先验概率审定为1或0(即肯定或否定某件事发生), 那么无论我们如何增加证据你也依然得到同样的条件概率(此时P(A)=0 或 1 , P(A|B)= 0或1) 这告诉我们的第一个经验就是不要过早的下论断, 下了论断你的预测也就无法进化了, 或者可以称之为信仰。 你如果想让你的认知进步,就要给各种假设留一点空间。

贝叶斯分析的思路对于由证据的积累来推测一个事物发生的概率具有重大作用, 它告诉我们当我们要预测一个事物, 我们需要的是首先根据已有的经验和知识推断一个先验概率, 然后在新证据不断积累的情况下调整这个概率。整个通过积累证据来得到一个事件发生概率的过程我们称为贝叶斯分析。

2.似然函数:

    应用在概率函数中,其实和概率函数差不多,就是一个数产生的概率函数,比如:

    

    引申到“最大似然函数”:就是求最大概率下的参数。

    知乎上这个解释感觉很完美:

最大似然估计:现在已经拿到了很多个样本(你的数据集中所有因变量),这些样本值已经实现,最大似然估计就是去找到那个(组)参数估计值,使得前面已经实现的样本值发生概率最大。因为你手头上的样本已经实现了,其发生概率最大才符合逻辑。这时是求样本所有观测的联合概率最大化,是个连乘积,只要取对数,就变成了线性加总。此时通过对参数求导数,并令一阶导数为零,就可以通过解方程(组),得到最大似然估计值。

3.先验、后验和似然函数的区别

  先验和后验都是一个概率问题,然而似然函数不是一个概率,似然的作用是找到一个最大概率发生的值,所以他是一个确定的值或者近似接近的值。

  有个不成熟的比喻:后验概率=先验概率*似然函数

参考知乎大神回答:https://www.zhihu.com/question/27398304

            https://www.zhihu.com/question/24261751

这篇关于先验概率、后验概率、似然函数的理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1011560

相关文章

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数

深入理解RxJava:响应式编程的现代方式

在当今的软件开发世界中,异步编程和事件驱动的架构变得越来越重要。RxJava,作为响应式编程(Reactive Programming)的一个流行库,为Java和Android开发者提供了一种强大的方式来处理异步任务和事件流。本文将深入探讨RxJava的核心概念、优势以及如何在实际项目中应用它。 文章目录 💯 什么是RxJava?💯 响应式编程的优势💯 RxJava的核心概念

如何通俗理解注意力机制?

1、注意力机制(Attention Mechanism)是机器学习和深度学习中一种模拟人类注意力的方法,用于提高模型在处理大量信息时的效率和效果。通俗地理解,它就像是在一堆信息中找到最重要的部分,把注意力集中在这些关键点上,从而更好地完成任务。以下是几个简单的比喻来帮助理解注意力机制: 2、寻找重点:想象一下,你在阅读一篇文章的时候,有些段落特别重要,你会特别注意这些段落,反复阅读,而对其他部分

函数式编程思想

我们经常会用到各种各样的编程思想,例如面向过程、面向对象。不过笔者在该博客简单介绍一下函数式编程思想. 如果对函数式编程思想进行概括,就是f(x) = na(x) , y=uf(x)…至于其他的编程思想,可能是y=a(x)+b(x)+c(x)…,也有可能是y=f(x)=f(x)/a + f(x)/b+f(x)/c… 面向过程的指令式编程 面向过程,简单理解就是y=a(x)+b(x)+c(x)

深入理解数据库的 4NF:多值依赖与消除数据异常

在数据库设计中, "范式" 是一个常常被提到的重要概念。许多初学者在学习数据库设计时,经常听到第一范式(1NF)、第二范式(2NF)、第三范式(3NF)以及 BCNF(Boyce-Codd范式)。这些范式都旨在通过消除数据冗余和异常来优化数据库结构。然而,当我们谈到 4NF(第四范式)时,事情变得更加复杂。本文将带你深入了解 多值依赖 和 4NF,帮助你在数据库设计中消除更高级别的异常。 什么是