Elasticsearch——分页查询FromSize VS scroll

2024-05-28 10:32

本文主要是介绍Elasticsearch——分页查询FromSize VS scroll,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Elasticsearch中数据都存储在分片中,当执行搜索时每个分片独立搜索后,数据再经过整合返回。那么,如果要实现分页查询该怎么办呢?
更多内容参考Elasticsearch资料汇总

按照一般的查询流程来说,如果我想查询前10条数据:

  • 1 客户端请求发给某个节点
  • 2 节点转发给个个分片,查询每个分片上的前10条
  • 3 结果返回给节点,整合数据,提取前10条
  • 4 返回给请求客户端

那么当我想要查询第10条到第20条的数据该怎么办呢?这个时候就用到分页查询了。

from-size"浅"分页

"浅"分页的概念是小博主自己定义的,可以理解为简单意义上的分页。它的原理很简单,就是查询前20条数据,然后截断前10条,只返回10-20的数据。这样其实白白浪费了前10条的查询。

查询的方法如:

{"from" : 0, "size" : 10,"query" : {"term" : { "user" : "kimchy" }}
}

其中,from定义了目标数据的偏移值,size定义当前返回的事件数目。
默认from为0,size为10,即所有的查询默认仅仅返回前10条数据。

做过测试,越往后的分页,执行的效率越低。
通过下图可以看出,刨去一些异常的数据,总体上还是会随着from的增加,消耗时间也会增加。而且数据量越大,效果越明显!

也就是说,分页的偏移值越大,执行分页查询时间就会越长!

scroll“深”分页

相对于from和size的分页来说,使用scroll可以模拟一个传统数据的游标,记录当前读取的文档信息位置。这个分页的用法,不是为了实时查询数据,而是为了一次性查询大量的数据(甚至是全部的数据)。

因为这个scroll相当于维护了一份当前索引段的快照信息,这个快照信息是你执行这个scroll查询时的快照。在这个查询后的任何新索引进来的数据,都不会在这个快照中查询到。但是它相对于from和size,不是查询所有数据然后剔除不要的部分,而是记录一个读取的位置,保证下一次快速继续读取。

API使用方法如:

curl -XGET 'localhost:9200/twitter/tweet/_search?scroll=1m' -d '
{"query": {"match" : {"title" : "elasticsearch"}}
}
'

会自动返回一个_scroll_id,通过这个id可以继续查询(实际上这个ID会很长哦!):

curl -XGET  'localhost:9200/_search/scroll?scroll=1m&scroll_id=c2Nhbjs2OzM0NDg1ODpzRlBLc0FXNlNyNm5JWUc1'

注意,我在使用1.4版本的ES时,只支持把参数放在URL路径里面,不支持在JSON body中使用。

有个很有意思的事情,细心的会发现,这个ID其实是通过base64编码的:

cXVlcnlUaGVuRmV0Y2g7MTY7MjI3NTp2dFhLSjhsblFJbWRpd2NEdFBULWtBOzIyNzQ6dnRYS0o4bG5RSW1kaXdjRHRQVC1rQTsyMjgwOnZ0WEtKOGxuUUltZGl3Y0R0UFQta0E7MjI4MTp2dFhLSjhsblFJbWRpd2NEdFBULWtBOzIyODM6dnRYS0o4bG5RSW1kaXdjRHRQVC1rQTsyMjgyOnZ0WEtKOGxuUUltZGl3Y0R0UFQta0E7MjI4Njp2dFhLSjhsblFJbWRpd2NEdFBULWtBOzIyODc6dnRYS0o4bG5RSW1kaXdjRHRQVC1rQTsyMjg5OnZ0WEtKOGxuUUltZGl3Y0R0UFQta0E7MjI4NDp2dFhLSjhsblFJbWRpd2NEdFBULWtBOzIyODU6dnRYS0o4bG5RSW1kaXdjRHRQVC1rQTsyMjg4OnZ0WEtKOGxuUUltZGl3Y0R0UFQta0E7MjI3Njp2dFhLSjhsblFJbWRpd2NEdFBULWtBOzIyNzc6dnRYS0o4bG5RSW1kaXdjRHRQVC1rQTsyMjc4OnZ0WEtKOGxuUUltZGl3Y0R0UFQta0E7MjI3OTp2dFhLSjhsblFJbWRpd2NEdFBULWtBOzA7

如果使用解码工具可以看到:

queryThenFetch;16;2275:vtXKJ8lnQImdiwcDtPT-kA;2274:vtXKJ8lnQImdiwcDtPT-kA;2280:vtXKJ8lnQImdiwcDtPT-kA;2281:vtXKJ8lnQImdiwcDtPT-kA;2283:vtXKJ8lnQImdiwcDtPT-kA;2282:vtXKJ8lnQImdiwcDtPT-kA;2286:vtXKJ8lnQImdiwcDtPT-kA;2287:vtXKJ8lnQImdiwcDtPT-kA;2289:vtXKJ8lnQImdiwcDtPT-kA;2284:vtXKJ8lnQImdiwcDtPT-kA;2285:vtXKJ8lnQImdiwcDtPT-kA;2288:vtXKJ8lnQImdiwcDtPT-kA;2276:vtXKJ8lnQImdiwcDtPT-kA;2277:vtXKJ8lnQImdiwcDtPT-kA;2278:vtXKJ8lnQImdiwcDtPT-kA;2279:vtXKJ8lnQImdiwcDtPT-kA;0;

虽然搞不清楚里面是什么内容,但是看到了一堆规则的键值对,总是让人兴奋一下!

测试from&size VS scroll的性能

首先呢,需要在java中引入elasticsearch-jar,比如使用maven:

<dependency><groupId>org.elasticsearch</groupId><artifactId>elasticsearch</artifactId><version>1.4.4</version>
</dependency>

然后初始化一个client对象:

private static TransportClient client;private static String INDEX = "index_name";private static String TYPE = "type_name";public static TransportClient init(){Settings settings = ImmutableSettings.settingsBuilder().put("client.transport.sniff", true).put("cluster.name", "cluster_name").build();client = new TransportClient(settings).addTransportAddress(new InetSocketTransportAddress("localhost",9300));return client;}public static void main(String[] args) {TransportClient client = init();//这样就可以使用client执行查询了}

然后就是创建两个查询过程了 ,下面是from-size分页的执行代码:

System.out.println("from size 模式启动!");
Date begin = new Date();
long count = client.prepareCount(INDEX).setTypes(TYPE).execute().actionGet().getCount();
SearchRequestBuilder requestBuilder = client.prepareSearch(INDEX).setTypes(TYPE).setQuery(QueryBuilders.matchAllQuery());
for(int i=0,sum=0; sum<count; i++){SearchResponse response = requestBuilder.setFrom(i).setSize(50000).execute().actionGet();sum += response.getHits().hits().length;System.out.println("总量"+count+" 已经查到"+sum);
}
Date end = new Date();
System.out.println("耗时: "+(end.getTime()-begin.getTime()));

下面是scroll分页的执行代码,注意啊!scroll里面的size是相对于每个分片来说的,所以实际返回的数量是:分片的数量*size

System.out.println("scroll 模式启动!");
begin = new Date();
SearchResponse scrollResponse = client.prepareSearch(INDEX).setSearchType(SearchType.SCAN).setSize(10000).setScroll(TimeValue.timeValueMinutes(1)) .execute().actionGet();  
count = scrollResponse.getHits().getTotalHits();//第一次不返回数据
for(int i=0,sum=0; sum<count; i++){scrollResponse = client.prepareSearchScroll(scrollResponse.getScrollId())  .setScroll(TimeValue.timeValueMinutes(8))  .execute().actionGet();sum += scrollResponse.getHits().hits().length;System.out.println("总量"+count+" 已经查到"+sum);
}
end = new Date();
System.out.println("耗时: "+(end.getTime()-begin.getTime()));

我这里总的数据有33万多,分别以每页5000,10000,50000的数据量请求,得到如下的执行时间:

可以看到仅仅30万,就相差接近一倍的性能,更何况是如今的大数据环境...因此,如果想要对全量数据进行操作,快换掉fromsize,使用scroll吧!

参考

1 简书:elasticsearch 的滚动(scroll)
2 16php:Elasticsearch Scroll API详解
3 elastic:from-size查询
4 elastic:scroll query


这篇关于Elasticsearch——分页查询FromSize VS scroll的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1010310

相关文章

浅谈mysql的sql_mode可能会限制你的查询

《浅谈mysql的sql_mode可能会限制你的查询》本文主要介绍了浅谈mysql的sql_mode可能会限制你的查询,这个问题主要说明的是,我们写的sql查询语句违背了聚合函数groupby的规则... 目录场景:问题描述原因分析:解决方案:第一种:修改后,只有当前生效,若是mysql服务重启,就会失效;

MySQL多列IN查询的实现

《MySQL多列IN查询的实现》多列IN查询是一种强大的筛选工具,它允许通过多字段组合快速过滤数据,本文主要介绍了MySQL多列IN查询的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析与优化1.

Mysql中深分页的五种常用方法整理

《Mysql中深分页的五种常用方法整理》在数据量非常大的情况下,深分页查询则变得很常见,这篇文章为大家整理了5个常用的方法,文中的示例代码讲解详细,大家可以根据自己的需求进行选择... 目录方案一:延迟关联 (Deferred Join)方案二:有序唯一键分页 (Cursor-based Paginatio

mybatis-plus分页无效问题解决

《mybatis-plus分页无效问题解决》本文主要介绍了mybatis-plus分页无效问题解决,原因是配置分页插件的版本问题,旧版本和新版本的MyBatis-Plus需要不同的分页配置,感兴趣的可... 昨天在做一www.chinasem.cn个新项目使用myBATis-plus分页一直失败,后来经过多方

mybatis-plus 实现查询表名动态修改的示例代码

《mybatis-plus实现查询表名动态修改的示例代码》通过MyBatis-Plus实现表名的动态替换,根据配置或入参选择不同的表,本文主要介绍了mybatis-plus实现查询表名动态修改的示... 目录实现数据库初始化依赖包配置读取类设置 myBATis-plus 插件测试通过 mybatis-plu

MySQL中实现多表查询的操作方法(配sql+实操图+案例巩固 通俗易懂版)

《MySQL中实现多表查询的操作方法(配sql+实操图+案例巩固通俗易懂版)》本文主要讲解了MySQL中的多表查询,包括子查询、笛卡尔积、自连接、多表查询的实现方法以及多列子查询等,通过实际例子和操... 目录复合查询1. 回顾查询基本操作group by 分组having1. 显示部门号为10的部门名,员

mysql关联查询速度慢的问题及解决

《mysql关联查询速度慢的问题及解决》:本文主要介绍mysql关联查询速度慢的问题及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql关联查询速度慢1. 记录原因1.1 在一次线上的服务中1.2 最终发现2. 解决方案3. 具体操作总结mysql

mysql线上查询之前要性能调优的技巧及示例

《mysql线上查询之前要性能调优的技巧及示例》文章介绍了查询优化的几种方法,包括使用索引、避免不必要的列和行、有效的JOIN策略、子查询和派生表的优化、查询提示和优化器提示等,这些方法可以帮助提高数... 目录避免不必要的列和行使用有效的JOIN策略使用子查询和派生表时要小心使用查询提示和优化器提示其他常

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

SQL 中多表查询的常见连接方式详解

《SQL中多表查询的常见连接方式详解》本文介绍SQL中多表查询的常见连接方式,包括内连接(INNERJOIN)、左连接(LEFTJOIN)、右连接(RIGHTJOIN)、全外连接(FULLOUTER... 目录一、连接类型图表(ASCII 形式)二、前置代码(创建示例表)三、连接方式代码示例1. 内连接(I