【OpenVINO™】在C#中使用 OpenVINO™ 部署 YOLOv10 模型实现目标

2024-05-28 08:52

本文主要是介绍【OpenVINO™】在C#中使用 OpenVINO™ 部署 YOLOv10 模型实现目标,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 前言
    • 1.1 OpenVINO™ C# API
    • 1.2 YOLOv10
  • 2. 模型获取
    • 2.1 源码下载
    • 2.2 配置环境
    • 2.3 下载模型
  • 3. Yolov10 项目配置
    • 3.1 项目创建与环境配置
    • 3.2 定义模型预测方法
      • 3.2.1 定义目标检测模型方法
      • 3.2.2 使用OpenVINO™ 预处理接口编译模型
    • 3.2 模型预测方法调用
  • 4. 项目运行与演示
    • 4.1 项目编译和运行
    • 4.2 YOLOv10 目标检测模型运行结果
  • 5. 总结

  最近YOLO家族又添新成员:YOLOv10,YOLOv10 提出了一种一致的双任务方法,用于无nms训练的YOLOs,它同时带来了具有竞争力的性能和较低的推理延迟。此外,还介绍了整体效率-精度驱动的模型设计策略,从效率和精度两个角度对YOLOs的各个组成部分进行了全面优化,大大降低了计算开销,增强了性能。在本文中,我们将结合OpenVINO™ C# API 使用最新发布的OpenVINO™ 2024.1部署YOLOv10 目标检测模型

  OpenVINO™ C# API项目链接:

https://github.com/guojin-yan/OpenVINO-CSharp-API.git

  使用 OpenVINO™ C# API 部署 YOLOv10 全部源码:

https://github.com/guojin-yan/OpenVINO-CSharp-API-Samples/blob/master/model_samples/yolov10/

1. 前言

1.1 OpenVINO™ C# API

  英特尔发行版 OpenVINO™ 工具套件基于 oneAPI 而开发,可以加快高性能计算机视觉和深度学习视觉应用开发速度工具套件,适用于从边缘到云的各种英特尔平台上,帮助用户更快地将更准确的真实世界结果部署到生产系统中。通过简化的开发工作流程,OpenVINO™ 可赋能开发者在现实世界中部署高性能应用程序和算法。

  2024年4月25日,英特尔发布了开源 OpenVINO™ 2024.1 工具包,用于在各种硬件上优化和部署人工智能推理。更新了更多的 Gen AI 覆盖范围和框架集成,以最大限度地减少代码更改。同时提供了更广泛的 LLM 模型支持和更多的模型压缩技术。通过压缩嵌入的额外优化减少了 LLM 编译时间,改进了采用英特尔®高级矩阵扩展 (Intel® AMX) 的第 4 代和第 5 代英特尔®至强®处理器上 LLM 的第 1 令牌性能。通过对英特尔®锐炫™ GPU 的 oneDNN、INT4 和 INT8 支持,实现更好的 LLM 压缩和改进的性能。最后实现了更高的可移植性和性能,可在边缘、云端或本地运行 AI。

  OpenVINO™ C# API 是一个 OpenVINO™ 的 .Net wrapper,应用最新的 OpenVINO™ 库开发,通过 OpenVINO™ C API 实现 .Net 对 OpenVINO™ Runtime 调用,使用习惯与 OpenVINO™ C++ API 一致。OpenVINO™ C# API 由于是基于 OpenVINO™ 开发,所支持的平台与 OpenVINO™ 完全一致,具体信息可以参考 OpenVINO™。通过使用 OpenVINO™ C# API,可以在 .NET、.NET Framework等框架下使用 C# 语言实现深度学习模型在指定平台推理加速。

1.2 YOLOv10

  在过去的几年里,由于在计算成本和检测性能之间取得了有效的平衡,YOLOs已经成为实时目标检测领域的主导范式。然而,对非最大抑制(NMS)的后处理依赖阻碍了yolo的端到端部署,并对推理延迟产生不利影响。为了解决这些问题,首先提出了一种一致的双任务方法,用于无nms训练的YOLOs,它同时带来了具有竞争力的性能和较低的推理延迟。此外,我们还介绍了整体效率-精度驱动的模型设计策略。我们从效率和精度两个角度对YOLOs的各个组成部分进行了全面优化,大大降低了计算开销,增强了性能。我们的努力成果是用于实时端到端目标检测的新一代YOLO系列,称为YOLOv10。大量的实验表明,YOLOv10在各种模型尺度上都达到了最先进的性能和效率。例如,我们的YOLOv10-S在COCO上类似的AP下比RT-DETR-R18快1.8倍,同时参数数量和FLOPs减少2.8倍。与YOLOv9-C相比,在相同性能下,YOLOv10-B的延迟减少了46%,参数减少了25%。

1bf95709522207f785df9c0fc794848e_720

  下图为YOLOv10官方提供的模型训练精度以及不同模型数据量,可以看出YOLOv10与之前其他系列相比,数据量在减少的同时,精度依旧有所提升。

784e2fdf726621acac7b5ae610759393_720

2. 模型获取

2.1 源码下载

  YOLOv10 模型需要源码进行下载,首先克隆GitHub上的源码,输入以下指令:

git clone https://github.com/THU-MIG/yolov10.git
cd yolov10

2.2 配置环境

  接下来安装模型下载以及转换环境,此处使用Anaconda进行程序集管理,输入以下指令创建一个yolov10环境:

conda create -n yolov10 python=3.9
conda activate yolov10
pip install -r requirements.txt
pip install -e .

  然后安装OpenVINO™环境,输入以下指令:

pip install openvino==2024.1.0

2.3 下载模型

  首先导出目标识别模型,此处以官方预训练模型为例,首先下载预训练模型文件,然后调用yolo导出ONBNX格式的模型文件,最后使用 OpenVINO™ 的模型转换命令将模型转为IR格式,依次输入以下指令即可:

wget https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10s.pt
yolo export model=yolov10s.pt format=onnx opset=13 simplify
ovc yolov10s.onnx

image-20240525185303768

  模型的结构如下图所示:

image-20240525185348430

3. Yolov10 项目配置

3.1 项目创建与环境配置

  在Windows平台开发者可以使用Visual Studio平台开发程序,但无法跨平台实现,为了实现跨平台,此处采用dotnet指令进行项目的创建和配置。

  首先使用dotnet创建一个测试项目,在终端中输入一下指令:

dotnet new console --framework net6.0 --use-program-main -o yolov10

  此处以Windows平台为例安装项目依赖,首先是安装OpenVINO™ C# API项目依赖,在命令行中输入以下指令即可:

dotnet add package OpenVINO.CSharp.API
dotnet add package OpenVINO.runtime.win
dotnet add package OpenVINO.CSharp.API.Extensions
dotnet add package OpenVINO.CSharp.API.Extensions.OpenCvSharp

  关于在不同平台上搭建 OpenVINO™ C# API 开发环境请参考以下文章: 《在Windows上搭建OpenVINO™C#开发环境》 、《在Linux上搭建OpenVINO™C#开发环境》、《在MacOS上搭建OpenVINO™C#开发环境》

接下来安装使用到的图像处理库 OpenCvSharp,在命令行中输入以下指令即可:

dotnet add package OpenCvSharp4
dotnet add package OpenCvSharp4.Extensions
dotnet add package OpenCvSharp4.runtime.win

  关于在其他平台上搭建 OpenCvSharp 开发环境请参考以下文章:《【OpenCV】在Linux上使用OpenCvSharp》 、《【OpenCV】在MacOS上使用OpenCvSharp》

添加完成项目依赖后,项目的配置文件如下所示:

<Project Sdk="Microsoft.NET.Sdk"><PropertyGroup><OutputType>Exe</OutputType><TargetFramework>net6.0</TargetFramework><ImplicitUsings>enable</ImplicitUsings><Nullable>enable</Nullable></PropertyGroup><ItemGroup><PackageReference Include="OpenCvSharp4" Version="4.9.0.20240103" /><PackageReference Include="OpenCvSharp4.Extensions" Version="4.9.0.20240103" /><PackageReference Include="OpenCvSharp4.runtime.win" Version="4.9.0.20240103" /><PackageReference Include="OpenVINO.CSharp.API" Version="2024.0.0.1" /><PackageReference Include="OpenVINO.CSharp.API.Extensions.OpenCvSharp" Version="1.0.4" /><PackageReference Include="OpenVINO.runtime.win" Version="2024.0.0.1" /></ItemGroup></Project>

3.2 定义模型预测方法

  使用 OpenVINO™ C# API 部署模型主要包括以下几个步骤:

  • 初始化 OpenVINO Runtime Core
  • 读取本地模型(将图片数据预处理方式编译到模型)
  • 将模型编译到指定设备
  • 创建推理通道
  • 处理图像输入数据
  • 设置推理输入数据
  • 模型推理
  • 获取推理结果
  • 处理结果数据

3.2.1 定义目标检测模型方法

  按照 OpenVINO™ C# API 部署深度学习模型的步骤,编写YOLOv10模型部署流程,在之前的项目里,我们已经部署了YOLOv5~9等一系列模型,其部署流程是基本一致的,YOLOv10模型部署代码如下所示:

static void yolov10_det(string model_path, string image_path, string device)
{// -------- Step 1. Initialize OpenVINO Runtime Core --------Core core = new Core();// -------- Step 2. Read inference model --------Model model = core.read_model(model_path);OvExtensions.printf_model_info(model);// -------- Step 3. Loading a model to the device --------CompiledModel compiled_model = core.compile_model(model, device);// -------- Step 4. Create an infer request --------InferRequest infer_request = compiled_model.create_infer_request();// -------- Step 5. Process input images --------Mat image = new Mat(image_path); // Read image by opencvsharpint max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);Rect roi = new Rect(0, 0, image.Cols, image.Rows);image.CopyTo(new Mat(max_image, roi));float factor = (float)(max_image_length / 640.0);// -------- Step 6. Set up input data --------Tensor input_tensor = infer_request.get_input_tensor();Shape input_shape = input_tensor.get_shape();Mat input_mat = CvDnn.BlobFromImage(max_image, 1.0 / 255.0, new OpenCvSharp.Size(input_shape[2], input_shape[3]), 0, true, false);float[] input_data = new float[input_shape[1] * input_shape[2] * input_shape[3]];Marshal.Copy(input_mat.Ptr(0), input_data, 0, input_data.Length);input_tensor.set_data<float>(input_data);// -------- Step 7. Do inference synchronously --------infer_request.infer();// -------- Step 8. Get infer result data --------Tensor output_tensor = infer_request.get_output_tensor();int output_length = (int)output_tensor.get_size();float[] output_data = output_tensor.get_data<float>(output_length);// -------- Step 9. Process reault  --------List<Rect> position_boxes = new List<Rect>();List<int> class_ids = new List<int>();List<float> confidences = new List<float>();// Preprocessing output resultsfor (int i = 0; i < output_data.Length / 6; i++){int s = 6 * i;if ((float)output_data[s + 4] > 0.5){float cx = output_data[s + 0];float cy = output_data[s + 1];float dx = output_data[s + 2];float dy = output_data[s + 3];int x = (int)((cx) * factor);int y = (int)((cy) * factor);int width = (int)((dx - cx) * factor);int height = (int)((dy - cy) * factor);Rect box = new Rect();box.X = x;box.Y = y;box.Width = width;box.Height = height;position_boxes.Add(box);class_ids.Add((int)output_data[s + 5]);confidences.Add((float)output_data[s + 4]);}}for (int i = 0; i < class_ids.Count; i++){int index = i;Cv2.Rectangle(image, position_boxes[index], new Scalar(0, 0, 255), 2, LineTypes.Link8);Cv2.Rectangle(image, new OpenCvSharp.Point(position_boxes[index].TopLeft.X, position_boxes[index].TopLeft.Y + 30),new OpenCvSharp.Point(position_boxes[index].BottomRight.X, position_boxes[index].TopLeft.Y), new Scalar(0, 255, 255), -1);Cv2.PutText(image, class_ids[index] + "-" + confidences[index].ToString("0.00"),new OpenCvSharp.Point(position_boxes[index].X, position_boxes[index].Y + 25),HersheyFonts.HersheySimplex, 0.8, new Scalar(0, 0, 0), 2);}string output_path = Path.Combine(Path.GetDirectoryName(Path.GetFullPath(image_path)),Path.GetFileNameWithoutExtension(image_path) + "_result.jpg");Cv2.ImWrite(output_path, image);Slog.INFO("The result save to " + output_path);Cv2.ImShow("Result", image);Cv2.WaitKey(0);
}

3.2.2 使用OpenVINO™ 预处理接口编译模型

  OpenVINO™提供了推理数据预处理接口,用户可以更具模型的输入数据预处理方式进行设置。在读取本地模型后,调用数据预处理接口,按照模型要求的数据预处理方式进行输入配置,然后再将配置好的预处理接口与模型编译到一起,这样便实现了将模型预处理与模型结合在一起,实现OpenVINO对于处理过程的加速。主要是现在代码如下所示:

static void yolov10_det_process(string model_path, string image_path, string device)
{// -------- Step 1. Initialize OpenVINO Runtime Core --------Core core = new Core();// -------- Step 2. Read inference model --------Model model = core.read_model(model_path);OvExtensions.printf_model_info(model);PrePostProcessor processor = new PrePostProcessor(model);Tensor input_tensor_pro = new Tensor(new OvType(ElementType.U8), new Shape(1, 640, 640, 3));InputInfo input_info = processor.input(0);InputTensorInfo input_tensor_info = input_info.tensor();input_tensor_info.set_from(input_tensor_pro).set_layout(new Layout("NHWC")).set_color_format(ColorFormat.BGR);PreProcessSteps process_steps = input_info.preprocess();process_steps.convert_color(ColorFormat.RGB).resize(ResizeAlgorithm.RESIZE_LINEAR).convert_element_type(new OvType(ElementType.F32)).scale(255.0f).convert_layout(new Layout("NCHW"));Model new_model = processor.build();// -------- Step 3. Loading a model to the device --------CompiledModel compiled_model = core.compile_model(new_model, device);// -------- Step 4. Create an infer request --------InferRequest infer_request = compiled_model.create_infer_request();// -------- Step 5. Process input images --------Mat image = new Mat(image_path); // Read image by opencvsharpint max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);Rect roi = new Rect(0, 0, image.Cols, image.Rows);image.CopyTo(new Mat(max_image, roi));Cv2.Resize(max_image, max_image, new OpenCvSharp.Size(640, 640));float factor = (float)(max_image_length / 640.0);// -------- Step 6. Set up input data --------Tensor input_tensor = infer_request.get_input_tensor();Shape input_shape = input_tensor.get_shape();byte[] input_data = new byte[input_shape[1] * input_shape[2] * input_shape[3]];//max_image.GetArray<int>(out input_data);Marshal.Copy(max_image.Ptr(0), input_data, 0, input_data.Length);IntPtr destination = input_tensor.data();Marshal.Copy(input_data, 0, destination, input_data.Length);// -------- Step 7. Do inference synchronously --------... ...(后续与上文代码一致)
}

3.2 模型预测方法调用

  定义完模型推理接口后,便可以在主函数里进行调用。此处为了让大家更好的复现本文代码,提供了在线模型,用户只需要运行以下代码,便可以直接下载转换好的模型进行模型推理,无需再自行转换,主函数代码如下所示:

static void Main(string[] args)
{string model_path = "";string image_path = "";string device = "AUTO";if (args.Length == 0){if (!Directory.Exists("./model")){Directory.CreateDirectory("./model");}if (!File.Exists("./model/yolov10s.bin") && !File.Exists("./model/yolov10s.bin")){if (!File.Exists("./model/yolov10s.tar")){_ = Download.download_file_async("https://github.com/guojin-yan/OpenVINO-CSharp-API-Samples/releases/download/Model/yolov10s.tar","./model/yolov10s.tar").Result;}Download.unzip("./model/yolov10s.tar", "./model/");}if (!File.Exists("./model/test_image.jpg")){_ = Download.download_file_async("https://github.com/guojin-yan/OpenVINO-CSharp-API-Samples/releases/download/Image/test_det_02.jpg","./model/test_image.jpg").Result;}model_path = "./model/yolov10s.xml";image_path = "./model/test_image.jpg";}else if (args.Length >= 2){model_path = args[0];image_path = args[1];device = args[2];}else{Console.WriteLine("Please enter the correct command parameters, for example:");Console.WriteLine("> 1. dotnet run");Console.WriteLine("> 2. dotnet run <model path> <image path> <device name>");}// -------- Get OpenVINO runtime version --------OpenVinoSharp.Version version = Ov.get_openvino_version();Slog.INFO("---- OpenVINO INFO----");Slog.INFO("Description : " + version.description);Slog.INFO("Build number: " + version.buildNumber);Slog.INFO("Predict model files: " + model_path);Slog.INFO("Predict image  files: " + image_path);Slog.INFO("Inference device: " + device);Slog.INFO("Start yolov8 model inference.");//yolov10_det(model_path, image_path, device);yolov10_det_process(model_path, image_path, device);
}

代码提示:

​ 由于篇幅限制,上文中只展示了部分代码,想要获取全部源码,请访问项目GitHub自行下载:

​ 使用OpenVINO™ C# API部署YOLOv10目标检测模型:

https://github.com/guojin-yan/OpenVINO-CSharp-API-Samples/blob/master/model_samples/yolov10/yolov10_det_opencvsharp/Program.cs

此外为了满足习惯使用EmguCV处理图像数据的开发者,此处我们也提供了EmguCV版本代码:、

​ 使用OpenVINO™ C# API部署YOLOv10目标检测模型:

https://github.com/guojin-yan/OpenVINO-CSharp-API-Samples/blob/master/model_samples/yolov10/yolov10_det_emgucv/Program.cs

4. 项目运行与演示

4.1 项目编译和运行

  接下来输入项目编译指令进行项目编译,输入以下指令即可:

dotnet build

  接下来运行编译后的程序文件,在CMD中输入以下指令,运行编译后的项目文件:

dotnet run --no-build

运行后项目输出为:

4.2 YOLOv10 目标检测模型运行结果

  下图为YOLOv10 目标检测模型运行输出信息,此处我们使用在线转换好的模型进行推理。,首先会下载指定模型以及推理数据到本地,这样避免了开发者在自己配置环境和下载模型;接下来是输出打印 OpenVINO™ 版本信息,此处我们使用NuGet安装的依赖项,已经是OpenVINO™ 2024.0最新版本;接下来就是打印相关的模型信息,并输出每个过程所消耗时间。

image-20240525185650687

  下图为使用YOLOv10 目标检测模型推理结果:

image-20240525185823557

5. 总结

  在该项目中,我们结合之前开发的 OpenVINO™ C# API 项目部署YOLOv10模型,成功实现了对象目标检测与实例分割,并且根据不同开发者的使用习惯,同时提供了OpenCvSharp以及Emgu.CV两种版本,供各位开发者使用。最后如果各位开发者在使用中有任何问题,欢迎大家与我联系。

这篇关于【OpenVINO™】在C#中使用 OpenVINO™ 部署 YOLOv10 模型实现目标的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1010105

相关文章

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

2. c#从不同cs的文件调用函数

1.文件目录如下: 2. Program.cs文件的主函数如下 using System;using System.Collections.Generic;using System.Linq;using System.Threading.Tasks;using System.Windows.Forms;namespace datasAnalysis{internal static

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推