代码随想录算法训练营第20天 |● 654.最大二叉树 ● 617.合并二叉树 ● 700.二叉搜索树中的搜索 ● 98.验证二叉搜索树

本文主要是介绍代码随想录算法训练营第20天 |● 654.最大二叉树 ● 617.合并二叉树 ● 700.二叉搜索树中的搜索 ● 98.验证二叉搜索树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 654.最大二叉树
    • 思路
    • 方法一 递归法
    • 方法一2 老师的+优化递归法
  • 617.合并二叉树
    • 思路
    • 方法一 递归法
    • 方法二 迭代法
  • 700.二叉搜索树中的搜索
    • 思路
    • 方法一 递归法
    • 方法二 迭代法
  • 98.验证二叉搜索树
    • 思路
    • 方法一 使用数组
    • 方法二 不使用数组
      • 代码注意点:
    • 方法二 使用双指针优化
    • 方法三 递归法
  • 总结


前言

617,98只掌握了递归法

654.最大二叉树

在这里插入图片描述
在这里插入图片描述

思路

注意事项【本题简单,就这两个重要些儿】

  1. 使用前序遍历
  2. 可以在传入的时候传入数组和左右index而不是每次都复值一个数组的方式来节省空间开销。

老师在讲的思路和我下面有一点出入:
4. 他进入递归里面的nums不为空,长度大于等于1【题目给出的】,所以在切割左右数组的时候会加了限定index>0或者index<size-1,保证nums里面有元素才递归,我的方法会有空的情况【反正没错】。

方法一 递归法

下面是自己写的代码,一遍过,和昨天的一样思路,还比昨天的简单

class Solution(object):def constructMaximumBinaryTree(self, nums):""":type nums: List[int]:rtype: TreeNode"""if not nums: return Nonemax_val = max(nums) max_index = nums.index(max_val)node = TreeNode(val=max_val)#返回条件 叶子节点;本题中因为有了上面的None的情况,所以可以省略下面这一句判断if len(nums) == 1: return node# 单层递归逻辑#拆分左右left_tree = nums[:max_index]right_tree = nums[max_index+1:]node.left = self.constructMaximumBinaryTree(left_tree)node.right = self.constructMaximumBinaryTree(right_tree)return node

方法一2 老师的+优化递归法

思路:三步走

  1. 返回node
  2. 在这里插入图片描述
  3. 有3步
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

优化:没有必要每次传入的时候都是复值的一个新的小数组,只需要传入index的起止就可以了;

class Solution:def traversal(self, nums: List[int], left: int, right: int) -> TreeNode:if left >= right:return NonemaxValueIndex = leftfor i in range(left + 1, right):#不适用max和.index函数的写法。if nums[i] > nums[maxValueIndex]:maxValueIndex = iroot = TreeNode(nums[maxValueIndex])root.left = self.traversal(nums, left, maxValueIndex)root.right = self.traversal(nums, maxValueIndex + 1, right)return rootdef constructMaximumBinaryTree(self, nums: List[int]) -> TreeNode:return self.traversal(nums, 0, len(nums))

617.合并二叉树

在这里插入图片描述
💌这是十分经典的二叉树题目;可以想想之前做过的对称二叉树;

思路

优先掌握递归法
总体思路:两棵树同步遍历+不是创建了一个新的二叉树,而是直接改的tree1;
三步递归法:

  1. 输入和返回值:输入两个tree,输出root
  2. 终止条件【💖十分巧妙】:如果t1为空,那么返回t2;如果t2为空,那就接t1
    • t1空了,肯定就是直接把后面的t2嫁接过来;当然t2为空也没有关系,那就接t2
  3. 单层逻辑:val为t1的val+t2的val;左节点为t1.left和t2.left递归之后的结果,右边也是。
  4. 补充:三种遍历顺序都是一样的

方法一 递归法

直接在t1上面处理,节省空间

class Solution(object):def mergeTrees(self, root1, root2):""":type root1: TreeNode:type root2: TreeNode:rtype: TreeNode"""if not root1:return root2if not root2:return root1root1.val += root2.valroot1.left = self.mergeTrees(root1.left,root2.left)root1.right = self.mergeTrees(root1.right,root2.right)return root1

方法二 迭代法

700.二叉搜索树中的搜索

在这里插入图片描述

思路

本题需要掌握递归法和迭代法,因为都很简单
在这里插入图片描述

方法一 递归法

三步走

  1. 传入root,传出一个是搜索数值对应的节点
  2. 终止条件:如果传入的为空的话,返回none;如果发现值相等target的话,也是直接返回root
  3. 单层递归条件:如果整个值小于root的值,进入左子树递归;大的话就是右子树
  4. 💘十分巧妙的点:终止条件里面两个可以合并,如果root==none,也是直接返回
class Solution(object):def searchBST(self, root, val):""":type root: TreeNode:type val: int:rtype: TreeNode"""if not root or root.val == val: return rootif root.val < val: result = self.searchBST(root.right)if root.val > val: result = self.searchBST(root.left)return result

方法二 迭代法

因为二叉搜索树的特性,所以很简单

class Solution:def searchBST(self, root: TreeNode, val: int) -> TreeNode:while root:if val < root.val: root = root.leftelif val > root.val: root = root.rightelse: return rootreturn None

98.验证二叉搜索树

## 题目
注意:二叉搜索树是不可以有重复的

思路

总体思路:使用中序遍历(前中后),那么遍历过程中的元素应该是单调递增的。

方法一 使用数组

方法一:定义一个全局变量list,遍历一次append一次,如果是递增数组就是对的
在这里插入图片描述

class Solution(object):def __init__(self):self.vec = []def traversal(self,root):if not root: return Trueself.traversal(root.left)self.vec.append(root.val)self.traversal(root.right)def isValidBST(self, root):""":type root: TreeNode:rtype: bool"""if not root: return Trueself.traversal(root)for i in range(1,len(self.vec)):if self.vec[i-1] >= self.vec[i]:return Falsereturn True

方法二 不使用数组

方法二:不额外申请数组占据空间的方法,遍历的过程中直接比较。
陷阱
陷阱1: 不能单纯的比较左节点小于中间节点,右节点大于中间节点就完事了;会出现下面的反面情况
在这里插入图片描述
陷阱2:
在这里插入图片描述
递归三部曲

  1. 定义全局变量记录遍历过程中的最大值,输入为root输出为bool
  2. 终止条件:如果为空节点,也是满足的。
  3. 单层遍历的逻辑:前序递归;一直更新maxVal,一旦发现maxVal >= root->val,就返回false,注意元素相同时候也要返回false;后续递归–>最后返回的应该是前序和后序遍历的结果

代码注意点:

  1. python里面设定极小值的代码为 self.maxVal = float(‘-inf’)
  2. 可以写>=的,,,,
  3. 单层中结合左右中的结果来返回。别忘了返回左右的判断结果
class Solution:def __init__(self):self.maxVal = float('-inf')  # 因为后台测试数据中有int最小值def isValidBST(self, root):if root is None:return Trueleft = self.isValidBST(root.left)# 中序遍历,验证遍历的元素是不是从小到大if self.maxVal < root.val:self.maxVal = root.valelse:return Falseright = self.isValidBST(root.right)return left and right

方法二 使用双指针优化

为了解决方法二中的担忧:如果输入的就是int的最小值怎么办,如何给maxvalue初始化呢?使用双指针法来优化
定义一个全局指针pre,单层的逻辑修改为if (pre != NULL && pre->val >= root->val) return false;pre = root; // 记录前一个节点

class Solution(object):def __init__(self):self.pre = None def isValidBST(self, root):""":type root: TreeNode:rtype: bool"""if not root: return Trueleft = self.isValidBST(root.left)if self.pre and self.pre.val >= root.val: return Falseself.pre = rootright =  self.isValidBST(root.right)return left  and right

方法三 递归法


总结

today还是太慢了。一直在玩,实验都没有怎么做。

这篇关于代码随想录算法训练营第20天 |● 654.最大二叉树 ● 617.合并二叉树 ● 700.二叉搜索树中的搜索 ● 98.验证二叉搜索树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1008972

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调