机器学习笔记——K近邻算法、手写数字识别

2024-05-27 19:28

本文主要是介绍机器学习笔记——K近邻算法、手写数字识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

KNN算法

“物以类聚,人以群分”相似的数据往往拥有相同的类别
其大概原理就是一个样本归到哪一类,当前样本需要归到频次最高的哪个类去
也就是说有一个待分类的样本,然后跟他周围的k个样本来看,k中哪一个类最多,待分类的样本就是哪一个。
那就以手写数字识别为例吧

import matplotlib.pyplot as plt
import numpy as np
import os
#%%
# 读入mnist数据集
m_x = np.loadtxt('./data/mnist_x', delimiter=' ')
m_y = np.loadtxt('./data/mnist_y')
#%%
# 数据集可视化
data = np.reshape(np.array(m_x[0], dtype=int), [28, 28])
plt.figure()
plt.imshow(data, cmap='gray')
#%%
# 将数据集分为训练集和测试集
ratio = 0.8
split = int(len(m_x) * ratio)
# 打乱数据
np.random.seed(0)
idx = np.random.permutation(np.arange(len(m_x))) #随机排序
m_x = m_x[idx]
m_y = m_y[idx]
x_train, x_test = m_x[:split], m_x[split:]
y_train, y_test = m_y[:split], m_y[split:]
#%%
#定义距离函数
def distance(x,y):return np.sqrt(np.sum(np.square(x-y)))#%%
#定义KNN模型
class KNN:def __init__(self,k,label_num):self.k=kself.label_num=label_num #类别的数量def fit(self,x_train,y_train):self.x_train=x_trainself.y_train=y_traindef get_knn_indices(self,x): #获得距离目标样本最近的k个点的标签,a来做self_x.traindis=list(map(lambda a:distance(a,x),self.x_train))knn_indices=np.argsort(dis) #对距离排序,在选择k个出来knn_indices=knn_indices[:self.k]#标签return knn_indicesdef get_label(self,x):#计算k个点中,样本的标签数量是多少knn_indices=self.get_knn_indices(x)label_statistic=np.zeros(shape=[self.label_num])for index in knn_indices:label=int(self.y_train[index])label_statistic[label]+=1return np.argmax(label_statistic) #找出最大的类别def predict(self,x_test):predicted_test_labels=np.zeros(shape=[len(x_test)],dtype=int)for i,x in enumerate(x_test): #枚举predicted_test_labels[i]=self.get_label(x)return predicted_test_labels#%%
for k in range(1,10):knn=KNN(k,label_num=10)knn.fit(x_train,y_train)predicted_labels=knn.predict(x_test)accuracy=np.mean(predicted_labels==y_test)print(f'k的取值为{k},预测准确率为{accuracy*100:.lf}%')

这篇关于机器学习笔记——K近邻算法、手写数字识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1008379

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

java字符串数字补齐位数详解

《java字符串数字补齐位数详解》:本文主要介绍java字符串数字补齐位数,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java字符串数字补齐位数一、使用String.format()方法二、Apache Commons Lang库方法三、Java 11+的St

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

讯飞webapi语音识别接口调用示例代码(python)

《讯飞webapi语音识别接口调用示例代码(python)》:本文主要介绍如何使用Python3调用讯飞WebAPI语音识别接口,重点解决了在处理语音识别结果时判断是否为最后一帧的问题,通过运行代... 目录前言一、环境二、引入库三、代码实例四、运行结果五、总结前言基于python3 讯飞webAPI语音

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为