延迟重平衡优化(Deferred Re-balancing Optimization Schedule)

2024-05-27 14:28

本文主要是介绍延迟重平衡优化(Deferred Re-balancing Optimization Schedule),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DRW

论文代码

        elif args.train_rule == 'DRW':train_sampler = Noneidx = epoch // 160betas = [0, 0.9999]effective_num = 1.0 - np.power(betas[idx], cls_num_list)print(f"\neffective_num:{effective_num}")per_cls_weights = (1.0 - betas[idx]) / np.array(effective_num)per_cls_weights = per_cls_weights / np.sum(per_cls_weights) * len(cls_num_list)per_cls_weights = torch.FloatTensor(per_cls_weights).to(args.device)print(f"\nper_cls_weights:{per_cls_weights}")

160epoch之前,每一类的权重是1;

160epoch之后,每一类的权重经过带β公式计算的,更偏重与少数类的样本。

案例代码

import numpy as np
import torch# 模拟的类别样本数量
cls_num_list = np.array([5, 50, 100])# Beta值用于不同训练阶段
betas = [0, 0.9999]# 总训练轮次
total_epochs = 3# 模拟训练过程
for epoch in range(total_epochs):# 根据当前训练轮次计算索引idx = epoch // 2  # 分割成两个阶段current_beta = betas[idx]# 计算有效样本数effective_num = 1.0 - np.power(current_beta, cls_num_list)# 计算每类的权重per_cls_weights = (1.0 - current_beta) / effective_numper_cls_weights = per_cls_weights / np.sum(per_cls_weights) * len(cls_num_list)# 转为Tensorper_cls_weights_tensor = torch.FloatTensor(per_cls_weights)# 输出当前轮次和对应的类别权重print(f"Epoch {epoch + 1}:")print(f"effective_num:{effective_num}")print(f"  Beta value: {current_beta:.4f}")print(f"  Class weights: {per_cls_weights_tensor}")

 

这篇关于延迟重平衡优化(Deferred Re-balancing Optimization Schedule)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1007732

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

从状态管理到性能优化:全面解析 Android Compose

文章目录 引言一、Android Compose基本概念1.1 什么是Android Compose?1.2 Compose的优势1.3 如何在项目中使用Compose 二、Compose中的状态管理2.1 状态管理的重要性2.2 Compose中的状态和数据流2.3 使用State和MutableState处理状态2.4 通过ViewModel进行状态管理 三、Compose中的列表和滚动

ActiveMQ—消息特性(延迟和定时消息投递)

ActiveMQ消息特性:延迟和定时消息投递(Delay and Schedule Message Delivery) 转自:http://blog.csdn.net/kimmking/article/details/8443872 有时候我们不希望消息马上被broker投递出去,而是想要消息60秒以后发给消费者,或者我们想让消息没隔一定时间投递一次,一共投递指定的次数。。。 类似

构建高性能WEB之HTTP首部优化

0x00 前言 在讨论浏览器优化之前,首先我们先分析下从客户端发起一个HTTP请求到用户接收到响应之间,都发生了什么?知己知彼,才能百战不殆。这也是作为一个WEB开发者,为什么一定要深入学习TCP/IP等网络知识。 0x01 到底发生什么了? 当用户发起一个HTTP请求时,首先客户端将与服务端之间建立TCP连接,成功建立连接后,服务端将对请求进行处理,并对客户端做出响应,响应内容一般包括响应

MySQL主从同步延迟原理及解决方案

概述 MySQL的主从同步是一个很成熟的架构,优点为: ①在从服务器可以执行查询工作(即我们常说的读功能),降低主服务器压力; ②在从主服务器进行备份,避免备份期间影响主服务器服务; ③当主服务器出现问题时,可以切换到从服务器。 相信大家对于这些好处已经非常了解了,在项目的部署中也采用这种方案。但是MySQL的主从同步一直有从库延迟的问题,那么为什么会有这种问题。这种问题如何解决呢? MyS

DAY16:什么是慢查询,导致的原因,优化方法 | undo log、redo log、binlog的用处 | MySQL有哪些锁

目录 什么是慢查询,导致的原因,优化方法 undo log、redo log、binlog的用处  MySQL有哪些锁   什么是慢查询,导致的原因,优化方法 数据库查询的执行时间超过指定的超时时间时,就被称为慢查询。 导致的原因: 查询语句比较复杂:查询涉及多个表,包含复杂的连接和子查询,可能导致执行时间较长。查询数据量大:当查询的数据量庞大时,即使查询本身并不复杂,也可能导致