第 8 章 机器人实体导航实现_路径规划(自学二刷笔记)

2024-05-27 10:12

本文主要是介绍第 8 章 机器人实体导航实现_路径规划(自学二刷笔记),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

重要参考:

课程链接:https://www.bilibili.com/video/BV1Ci4y1L7ZZ

讲义链接:Introduction · Autolabor-ROS机器人入门课程《ROS理论与实践》零基础教程

 

9.3.5 导航实现05_路径规划

路径规划仍然使用 navigation 功能包集中的 move_base 功能包。

5.1编写launch文件

关于move_base节点的调用,模板如下:

<launch><node pkg="move_base" type="move_base" respawn="false" name="move_base" output="screen" clear_params="true"><rosparam file="$(find nav)/param/costmap_common_params.yaml" command="load" ns="global_costmap" /><rosparam file="$(find nav)/param/costmap_common_params.yaml" command="load" ns="local_costmap" /><rosparam file="$(find nav)/param/local_costmap_params.yaml" command="load" /><rosparam file="$(find nav)/param/global_costmap_params.yaml" command="load" /><rosparam file="$(find nav)/param/base_local_planner_params.yaml" command="load" /></node></launch>
5.2编写配置文件

可参考仿真实现。

1.costmap_common_params.yaml

该文件是move_base 在全局路径规划与本地路径规划时调用的通用参数,包括:机器人的尺寸、距离障碍物的安全距离、传感器信息等。配置参考如下:

#机器人几何参,如果机器人是圆形,设置 robot_radius,如果是其他形状设置 footprint
robot_radius: 0.12 #圆形
# footprint: [[-0.12, -0.12], [-0.12, 0.12], [0.12, 0.12], [0.12, -0.12]] #其他形状obstacle_range: 3.0 # 用于障碍物探测,比如: 值为 3.0,意味着检测到距离小于 3 米的障碍物时,就会引入代价地图
raytrace_range: 3.5 # 用于清除障碍物,比如:值为 3.5,意味着清除代价地图中 3.5 米以外的障碍物#膨胀半径,扩展在碰撞区域以外的代价区域,使得机器人规划路径避开障碍物
inflation_radius: 0.2
#代价比例系数,越大则代价值越小
cost_scaling_factor: 3.0#地图类型
map_type: costmap
#导航包所需要的传感器
observation_sources: scan
#对传感器的坐标系和数据进行配置。这个也会用于代价地图添加和清除障碍物。例如,你可以用激光雷达传感器用于在代价地图添加障碍物,再添加kinect用于导航和清除障碍物。
scan: {sensor_frame: laser, data_type: LaserScan, topic: scan, marking: true, clearing: true}
2.global_costmap_params.yaml

该文件用于全局代价地图参数设置:

global_costmap:global_frame: map #地图坐标系robot_base_frame: base_footprint #机器人坐标系# 以此实现坐标变换update_frequency: 1.0 #代价地图更新频率publish_frequency: 1.0 #代价地图的发布频率transform_tolerance: 0.5 #等待坐标变换发布信息的超时时间static_map: true # 是否使用一个地图或者地图服务器来初始化全局代价地图,如果不使用静态地图,这个参数为false.
3.local_costmap_params.yaml

该文件用于局部代价地图参数设置:

local_costmap:global_frame: odom #里程计坐标系robot_base_frame: base_footprint #机器人坐标系update_frequency: 10.0 #代价地图更新频率publish_frequency: 10.0 #代价地图的发布频率transform_tolerance: 0.5 #等待坐标变换发布信息的超时时间static_map: false  #不需要静态地图,可以提升导航效果rolling_window: true #是否使用动态窗口,默认为false,在静态的全局地图中,地图不会变化width: 3 # 局部地图宽度 单位是 mheight: 3 # 局部地图高度 单位是 mresolution: 0.05 # 局部地图分辨率 单位是 m,一般与静态地图分辨率保持一致
4.base_local_planner_params.yaml

基本的局部规划器参数配置,这个配置文件设定了机器人的最大和最小速度限制值,也设定了加速度的阈值。

TrajectoryPlannerROS:# Robot Configuration Parametersmax_vel_x: 0.5 # X 方向最大速度min_vel_x: 0.1 # X 方向最小速度max_vel_theta:  1.0 # min_vel_theta: -1.0min_in_place_vel_theta: 1.0acc_lim_x: 1.0 # X 加速限制acc_lim_y: 0.0 # Y 加速限制acc_lim_theta: 0.6 # 角速度加速限制# Goal Tolerance Parameters,目标公差xy_goal_tolerance: 0.10yaw_goal_tolerance: 0.05# Differential-drive robot configuration
# 是否是全向移动机器人holonomic_robot: false# Forward Simulation Parameters,前进模拟参数sim_time: 0.8vx_samples: 18vtheta_samples: 20sim_granularity: 0.05
5.3launch文件集成

如果要实现导航,需要集成地图服务、amcl 、move_base 等,集成示例如下:

<launch><!-- 设置地图的配置文件 --><arg name="map" default="nav.yaml" /><!-- 运行地图服务器,并且加载设置的地图--><node name="map_server" pkg="map_server" type="map_server" args="$(find nav)/map/$(arg map)"/><!-- 启动AMCL节点 --><include file="$(find nav)/launch/amcl.launch" /><!-- 运行move_base节点 --><include file="$(find nav)/launch/move_base.launch" /></launch>
5.4测试

1.执行相关launch文件,启动机器人并加载机器人模型:roslaunch mycar_start start.launch;

2.启动导航相关的 launch 文件:roslaunch nav nav.launch;

3.添加Rviz组件实现导航(参考仿真实现)。

 

9.3.6 导航与SLAM建图

与仿真环境类似的,也可以实现机器人自主移动的SLAM建图,步骤如下:

  1. 编写launch文件,集成SLAM与move_base相关节点;
  2. 执行launch文件并测试。
6.1编写launc文件

当前launch文件(名称自定义,比如:auto_slam.launch)实现,无需调用map_server的相关节点,只需要启动SLAM节点与move_base节点,示例内容如下:

<launch><!-- 启动SLAM节点 --><include file="$(find nav)/launch/gmapping.launch" /><!-- 运行move_base节点 --><include file="$(find nav)/launch/move_base.launch" />
</launch>
6.2测试

1.执行相关launch文件,启动机器人并加载机器人模型:roslaunch mycar_start start.launch;

2.然后执行当前launch文件:roslaunch nav auto_slam.launch;

3.在rviz中通过2D Nav Goal设置目标点,机器人开始自主移动并建图了;

4.最后可以使用 map_server 保存地图。

 

这篇关于第 8 章 机器人实体导航实现_路径规划(自学二刷笔记)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1007179

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、