医疗实体链接(标准化)论文解读 (附代码) A Lightweight Neural Model for Biomedical Entity Linking

本文主要是介绍医疗实体链接(标准化)论文解读 (附代码) A Lightweight Neural Model for Biomedical Entity Linking,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、动机

论文:https://arxiv.org/abs/2012.08844

代码:https://github.com/tigerchen52/Biomedical-Entity-Linking

医疗实体链接 (Biomedical Entity Linking) 把文档中发现的疾病、药物、手术名词(mention)映射到知识库(knowledge base)中的标准术语词。

这项任务其实是非常有挑战的,这是因为文档中出现的医疗词语存在着多种变化,比如缩写、同义词、词形态变化、词序、错别字等。

其次,知识库中的标准术语集规模不算小,少的几万个术语,多的几十万个。更麻烦的是,这些术语长得还非常像,难以区分。

最后,医疗知识库不像传统的知识库WikiData和YAGO,术语(或实体)的信息只有一个实体名字,像实体描述、实体属性等待信息都是没有的,这给医疗实体链接带来了很大的难度。
如下例子,对于输入“decreases in hemoglobin”, 我们可以从MedDRA疾病词库中找到至少四个候选实体,你能找到正确的术语是哪一个吗?(答案是第三个)

decreases in hemoglobin1. increase in hematocrit
2. changes in hemoglobin
3. haemoglobin decreased
4. decreases in platelets
5. ......

最近BERT模型在NLP各个任务上都取得了惊人的成绩,也有人使用它在这个任务上进行了尝试,也取得SOTA的结果。

但是BERT模型上百万的参数在某种程度上也限制了它在资源受限(resourece-limted)场景下的使用。

因此,作者提出了一个想法,是否能使用一个简单的模型解决这个问题,而且在准确率上又差的不多呢?

 

这篇论文就是从这个问题出发,具体来说这项工作贡献如下:

  1. 作者提出了一种简单而有效神经网络模型,在三个医疗实体链接任务上,这个模型与BERT在统计上并无显著差异
  2. 这个模型比BERT小23倍,推理时间少6.4倍
  3. 除此之外,作者还探索如何在这个任务上使用额外特征,其中包括先验知识(Prior)、上下文(Context)、实体一致性(Coherence)

二、方法

模型的框架图如上所示,首先进行预处理,将mention和实体名称转化成统一的格式,然后再从知识库中找到top-k个候选实体,最后对这些实体进行排序输出得分最高的一个作为这个输入mention的标准术语。

上图是文章中的排序模型,作者首先使用预训练word embedding表示单词,然后为了解决out-of-vocabulary和错别字的问题,增加了character embedding。

Alignment Layer用来捕捉另一个文本中相似的部分,使用交互的信息进行表示每个文本,这样能够丰富单个文本的表示,很大程度提升模型的能力。

然后使用一个CNN层去提取关键特征,最后将两个文本的表示拼接在一起送入一个两层的全连接网络,这样就能计算出一个base score了。

除此之外,这个模型还可以加入先验信息、上下文信息、一致性信息。

三、实验

从上表中可以看出,作者的简单的base模型与BERT非常接近,在NCBI数据集上还超过了BERT模型。 

在base模型上加入额外特征还能够得到一定收益。

下表是作者模型大小和推理时间,在这两个维度上,作者的base模型都是有显著的优势的。

 

这篇关于医疗实体链接(标准化)论文解读 (附代码) A Lightweight Neural Model for Biomedical Entity Linking的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1003995

相关文章

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

Redis与缓存解读

《Redis与缓存解读》文章介绍了Redis作为缓存层的优势和缺点,并分析了六种缓存更新策略,包括超时剔除、先删缓存再更新数据库、旁路缓存、先更新数据库再删缓存、先更新数据库再更新缓存、读写穿透和异步... 目录缓存缓存优缺点缓存更新策略超时剔除先删缓存再更新数据库旁路缓存(先更新数据库,再删缓存)先更新数

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.