医疗实体链接(标准化)论文解读 (附代码) A Lightweight Neural Model for Biomedical Entity Linking

本文主要是介绍医疗实体链接(标准化)论文解读 (附代码) A Lightweight Neural Model for Biomedical Entity Linking,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、动机

论文:https://arxiv.org/abs/2012.08844

代码:https://github.com/tigerchen52/Biomedical-Entity-Linking

医疗实体链接 (Biomedical Entity Linking) 把文档中发现的疾病、药物、手术名词(mention)映射到知识库(knowledge base)中的标准术语词。

这项任务其实是非常有挑战的,这是因为文档中出现的医疗词语存在着多种变化,比如缩写、同义词、词形态变化、词序、错别字等。

其次,知识库中的标准术语集规模不算小,少的几万个术语,多的几十万个。更麻烦的是,这些术语长得还非常像,难以区分。

最后,医疗知识库不像传统的知识库WikiData和YAGO,术语(或实体)的信息只有一个实体名字,像实体描述、实体属性等待信息都是没有的,这给医疗实体链接带来了很大的难度。
如下例子,对于输入“decreases in hemoglobin”, 我们可以从MedDRA疾病词库中找到至少四个候选实体,你能找到正确的术语是哪一个吗?(答案是第三个)

decreases in hemoglobin1. increase in hematocrit
2. changes in hemoglobin
3. haemoglobin decreased
4. decreases in platelets
5. ......

最近BERT模型在NLP各个任务上都取得了惊人的成绩,也有人使用它在这个任务上进行了尝试,也取得SOTA的结果。

但是BERT模型上百万的参数在某种程度上也限制了它在资源受限(resourece-limted)场景下的使用。

因此,作者提出了一个想法,是否能使用一个简单的模型解决这个问题,而且在准确率上又差的不多呢?

 

这篇论文就是从这个问题出发,具体来说这项工作贡献如下:

  1. 作者提出了一种简单而有效神经网络模型,在三个医疗实体链接任务上,这个模型与BERT在统计上并无显著差异
  2. 这个模型比BERT小23倍,推理时间少6.4倍
  3. 除此之外,作者还探索如何在这个任务上使用额外特征,其中包括先验知识(Prior)、上下文(Context)、实体一致性(Coherence)

二、方法

模型的框架图如上所示,首先进行预处理,将mention和实体名称转化成统一的格式,然后再从知识库中找到top-k个候选实体,最后对这些实体进行排序输出得分最高的一个作为这个输入mention的标准术语。

上图是文章中的排序模型,作者首先使用预训练word embedding表示单词,然后为了解决out-of-vocabulary和错别字的问题,增加了character embedding。

Alignment Layer用来捕捉另一个文本中相似的部分,使用交互的信息进行表示每个文本,这样能够丰富单个文本的表示,很大程度提升模型的能力。

然后使用一个CNN层去提取关键特征,最后将两个文本的表示拼接在一起送入一个两层的全连接网络,这样就能计算出一个base score了。

除此之外,这个模型还可以加入先验信息、上下文信息、一致性信息。

三、实验

从上表中可以看出,作者的简单的base模型与BERT非常接近,在NCBI数据集上还超过了BERT模型。 

在base模型上加入额外特征还能够得到一定收益。

下表是作者模型大小和推理时间,在这两个维度上,作者的base模型都是有显著的优势的。

 

这篇关于医疗实体链接(标准化)论文解读 (附代码) A Lightweight Neural Model for Biomedical Entity Linking的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1003995

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr