llama3-8b-instruct-262k微调过程的问题笔记(场景为llama论文审稿)

本文主要是介绍llama3-8b-instruct-262k微调过程的问题笔记(场景为llama论文审稿),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、环境配置

  1.1、模型

  1.2、微调环境

  1.3、微调数据

二、发现的问题

  2.1、过拟合问题

  2.2、Qlora zero3 保存模型时OOM问题(已解决)


一、环境配置

  1.1、模型

llama3-8b-instruct-262k (英文)

  1.2、微调环境

 Package Version
----------------------------- -----------
absl-py 2.1.0
accelerate 0.31.0.dev0
aiohttp 3.9.5
aiosignal 1.3.1
annotated-types 0.7.0
anyio 4.3.0
async-timeout 4.0.3
attrs 23.2.0
bitsandbytes 0.43.1
certifi 2024.2.2
cffi 1.16.0
charset-normalizer 3.3.2
click 8.1.7
contourpy 1.2.1
cryptography 42.0.7
cycler 0.12.1
datasets 2.19.1
datatrove 0.2.0
deepspeed 0.14.0
Deprecated 1.2.14
dill 0.3.8
docker-pycreds 0.4.0
docstring_parser 0.16
einops 0.8.0
et-xmlfile 1.1.0
evaluate 0.4.2
exceptiongroup 1.2.1
filelock 3.14.0
flash-attn 2.5.7
fonttools 4.51.0
frozenlist 1.4.1
fsspec 2024.3.1
gitdb 4.0.11
GitPython 3.1.43
grpcio 1.64.0
h11 0.14.0
hf_transfer 0.1.6
hjson 3.1.0
httpcore 1.0.5
httpx 0.27.0
huggingface-hub 0.23.1
humanize 4.9.0
idna 3.7
Jinja2 3.1.4
joblib 1.4.2
kiwisolver 1.4.5
loguru 0.7.2
Markdown 3.6
markdown-it-py 3.0.0
MarkupSafe 2.1.5
matplotlib 3.9.0
mdurl 0.1.2
mpmath 1.3.0
multidict 6.0.5
multiprocess 0.70.16
networkx 3.3
ninja 1.11.1.1
nltk 3.8.1
numpy 1.26.4
nvidia-cublas-cu12 12.1.3.1
nvidia-cuda-cupti-cu12 12.1.105
nvidia-cuda-nvrtc-cu12 12.1.105
nvidia-cuda-runtime-cu12 12.1.105
nvidia-cudnn-cu12 8.9.2.26
nvidia-cufft-cu12 11.0.2.54
nvidia-curand-cu12 10.3.2.106
nvidia-cusolver-cu12 11.4.5.107
nvidia-cusparse-cu12 12.1.0.106
nvidia-nccl-cu12 2.19.3
nvidia-nvjitlink-cu12 12.5.40
nvidia-nvtx-cu12 12.1.105
openpyxl 3.1.2
packaging 24.0
pandas 2.2.2
peft 0.11.2.dev0
pillow 10.3.0
pip 24.0
platformdirs 4.2.2
protobuf 3.20.3
psutil 5.9.8
py-cpuinfo 9.0.0
pyarrow 16.1.0
pyarrow-hotfix 0.6
pycparser 2.22
pydantic 2.7.1
pydantic_core 2.18.2
PyGithub 2.3.0
Pygments 2.18.0
PyJWT 2.8.0
PyNaCl 1.5.0
pynvml 11.5.0
pyparsing 3.1.2
python-dateutil 2.9.0.post0
pytz 2024.1
PyYAML 6.0.1
regex 2024.5.15
requests 2.32.2
rich 13.7.1
safetensors 0.4.3
scikit-learn 1.5.0
scipy 1.13.1
sentencepiece 0.2.0
sentry-sdk 2.3.1
setproctitle 1.3.3
setuptools 69.5.1
shtab 1.7.1
six 1.16.0
smmap 5.0.1
sniffio 1.3.1
sympy 1.12
tensorboard 2.16.2
tensorboard-data-server 0.7.2
threadpoolctl 3.5.0
tiktoken 0.7.0
tokenizers 0.19.1
torch 2.2.1
tqdm 4.66.4
transformers 4.42.0.dev0
transformers-stream-generator 0.0.5
triton 2.2.0
trl 0.8.7.dev0
typing_extensions 4.12.0
tyro 0.8.4
tzdata 2024.1
unsloth 2024.5
urllib3 2.2.1
wandb 0.17.0
Werkzeug 3.0.3
wheel 0.43.0
wrapt 1.16.0
xformers 0.0.25
xxhash 3.4.1
yarl 1.9.4

  1.3、微调数据

  • 数量:1.5k
  • 格式:jsonl,字典的key:input: paper, output: review

二、发现的问题

  2.1、过拟合问题

问题简述:

整个微调的过程中没有使用合适的验证集验证最佳模型保存时机,一是因为数据量太少,使用少量的验证集验证不具有可信度,二是选择什么样的方式进行验证。由于没有相关验证集验证的过程,模型训练epoch过高过拟合反而推理会效果会变差,下面是推理效果比较(yarn那篇论文,除了迭代次数140的模型仅推理一次,其他迭代次数推理都是用了多次推理取较好的结果)

引申一些问题:

1. early stop:不同的数据最佳模型的迭代次数不一样,怎么精准判断最佳模型的迭代次数,保存最佳模型(仅通过loss判断可能有待商榷,因为模型推理的语言风格也是比较重要的考量方式,差别可以看下面的截图实例)

2. 验证集的验证方法选择什么样的方式来判断最佳模型

  • 迭代批次为140的(仅推理一次),1.4 左右epoch

  • 迭代批次为260的(推理多次取了最优的效果),2.7左右epoch

  • 迭代批次为280的(推理多次取了最优的效果),2.9左右epoch

  2.2、Qlora zero3 保存模型时OOM问题(已解决)

问题简述:

我使用longqlora zero3模型微调 llama3-8b-instruct-262k,开启了shift short attention + flash attention v2,训练的过程中一切正常,loss正常下降,使用的设备为 A6000 (48G),占用的显存为30G左右,但在trainer保存模型时(模型 + zero3 优化器状态),显存的占用会出现短暂的暴涨为58G,模型保存后显存暂用恢复至30G左右。

我使用A100尝试关闭shift short attention,仅使用flash attention v2训练,依然在模型保存时显存占用增加,但A100为80G显存,训练便正常进行了

疑问❓:为何仅仅在模型保存的时候显存会出现爆发式增加呢?

  • 正常的训练的显存占用

  • 保存model时显存瞬间占用

(图:略)

  •  排查问题与解决方式:per_device_eval_batch_size设置太大了,模型保存时会进行验证集验证过程,per_device_eval_batch_size 设置小一些降低显存溢出的可能性。

这篇关于llama3-8b-instruct-262k微调过程的问题笔记(场景为llama论文审稿)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1003171

相关文章

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

oracle数据库索引失效的问题及解决

《oracle数据库索引失效的问题及解决》本文总结了在Oracle数据库中索引失效的一些常见场景,包括使用isnull、isnotnull、!=、、、函数处理、like前置%查询以及范围索引和等值索引... 目录oracle数据库索引失效问题场景环境索引失效情况及验证结论一结论二结论三结论四结论五总结ora

element-ui下拉输入框+resetFields无法回显的问题解决

《element-ui下拉输入框+resetFields无法回显的问题解决》本文主要介绍了在使用ElementUI的下拉输入框时,点击重置按钮后输入框无法回显数据的问题,具有一定的参考价值,感兴趣的... 目录描述原因问题重现解决方案方法一方法二总结描述第一次进入页面,不做任何操作,点击重置按钮,再进行下

最新版IDEA配置 Tomcat的详细过程

《最新版IDEA配置Tomcat的详细过程》本文介绍如何在IDEA中配置Tomcat服务器,并创建Web项目,首先检查Tomcat是否安装完成,然后在IDEA中创建Web项目并添加Web结构,接着,... 目录配置tomcat第一步,先给项目添加Web结构查看端口号配置tomcat    先检查自己的to

解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题

《解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题》本文主要讲述了在使用MyBatis和MyBatis-Plus时遇到的绑定异常... 目录myBATis-plus-boot-starpythonter与mybatis-spring-b

SpringBoot集成SOL链的详细过程

《SpringBoot集成SOL链的详细过程》Solanaj是一个用于与Solana区块链交互的Java库,它为Java开发者提供了一套功能丰富的API,使得在Java环境中可以轻松构建与Solana... 目录一、什么是solanaj?二、Pom依赖三、主要类3.1 RpcClient3.2 Public

Android数据库Room的实际使用过程总结

《Android数据库Room的实际使用过程总结》这篇文章主要给大家介绍了关于Android数据库Room的实际使用过程,详细介绍了如何创建实体类、数据访问对象(DAO)和数据库抽象类,需要的朋友可以... 目录前言一、Room的基本使用1.项目配置2.创建实体类(Entity)3.创建数据访问对象(DAO

SpringBoot整合kaptcha验证码过程(复制粘贴即可用)

《SpringBoot整合kaptcha验证码过程(复制粘贴即可用)》本文介绍了如何在SpringBoot项目中整合Kaptcha验证码实现,通过配置和编写相应的Controller、工具类以及前端页... 目录SpringBoot整合kaptcha验证码程序目录参考有两种方式在springboot中使用k

mysql主从及遇到的问题解决

《mysql主从及遇到的问题解决》本文详细介绍了如何使用Docker配置MySQL主从复制,首先创建了两个文件夹并分别配置了`my.cnf`文件,通过执行脚本启动容器并配置好主从关系,文中还提到了一些... 目录mysql主从及遇到问题解决遇到的问题说明总结mysql主从及遇到问题解决1.基于mysql

java中VO PO DTO POJO BO DO对象的应用场景及使用方式

《java中VOPODTOPOJOBODO对象的应用场景及使用方式》文章介绍了Java开发中常用的几种对象类型及其应用场景,包括VO、PO、DTO、POJO、BO和DO等,并通过示例说明了它... 目录Java中VO PO DTO POJO BO DO对象的应用VO (View Object) - 视图对象